
1

Subverting BIND’s SRTT Algorithm
Derandomizing NS Selection

Roee Hay
IBM, Israel

roeeh@il.ibm.com

Jonathan Kalechstein
CS Department

Technion
kalechstain@gmail.com

Gabi Nakibly
National EW Research
& Simulation Center
gabin@rafael.co.il

Abstract. One of the defenses against DNS
cache poisoning is randomization of the IP address
of the queried name server. We present a newly
found vulnerability in BIND, the most widely used
DNS software on the Internet, which enables an
attacker to easily and deterministically control the
queried name server chosen by BIND’s resolver.
The vulnerability lies in BIND’s SRTT (Smoothed
Round Trip Time) algorithm. The attack reduces
the time and effort required to successfully poison
BIND’s cache. The general lesson from this vulner-
ability is that a DNS resolver must never keep a
global state shared between different domain names
(in our case the SRTT values are kept as a global
state).

I. Introduction

The Domain Name System (DNS) [Moc87a],
[Moc87b] is a hierarchical distributed naming sys-
tem which allows to resolve names to IP addresses.
Generally, during a DNS resolution a resolver issues
a query for a name which is responded to by a name
server (NS). A resolver may be a client or a cache
server handling queries on behalf of other clients.
BIND is the most widely used DNS software on the
Internet [Sas10] for name and cache servers.

The most common type of attack on DNS is
cache poisoning. In this type of attack an attacker
causes a victim resolver to cache a bogus DNS
resource record (RR). This may enable further
attacks, with an impact on both integrity and
confidentiality. For example, integrity can be bro-
ken if the target cache is poisoned with a fake
RR that resolves the name of a software update
server to an IP address of an attacker controlled
server. As another example, confidentiality can be
compromised by poisoning a cache with a bogus
RR that resolves the name of a web server to
an attacker controlled IP address. When a user

browses to that web server, he will connect the
attacker’s web server instead of the genuine one and
may reveal private information.

A common method to achieve DNS cache poi-
soning is by generating a forged response to a DNS
query sent by the victim resolver. To mitigate this
attack method a resolver uses unpredictable values
with each generated query. Since the corresponding
values in the response must match the values sent
in the query, it is difficult for a blind (off-path)
attacker, who does not see the query, to forge a
valid response. The most common values which
the resolver randomizes are DNS transaction ID
(TXID), UDP source port and the IP address of
the queried name server [HvM09]. The IP address
of the queried name server is chosen from a list of
candidate name servers that are relevant for the
domain name to be resolved.

In this work we present a newly discovered vul-
nerability in BIND which allows an attacker to
determine (derandomize) the IP address of the
name server a BIND resolver queries. The attack
reduces the amount of information a blind attacker
must guess to successfully poison BIND’s cache.
The vulnerability lies in BIND’s algorithm that
updates the SRTT (Smoothed Round Trip Time)
of each name server. The vulnerability has been
acknowledged by ISC (the maintainers of BIND).

II. The SRTT algorithm

BIND maintains a dynamic list of candidate
name servers for resolving a particular query. From
this set of candidate name servers one is chosen
and queried. If the query fails for some reason,
BIND chooses another NS from the remaining set
and so on. BIND chooses the NS with the lowest
SRTT (Smoothed Round Trip Time). The SRTT
of a NS estimates the time the resolver may wait
for a response from that NS. The SRTT value for



2

each name server is stored in a global cache indexed
by the name server’s IP address and calculated as
follows (the indicated source code locations are of
BIND 9.8.1-P1):

1) Init.1 When a candidate NS is first added
to the global cache it receives a very low
value: SRTTinit = 1 + 31 ∧ R µs where R
is a 32bit unsigned value returned by the
isc_random_get routine. If we assert that
the 5 least significant bits of R are distributed
uniformly, then SRTTinit ∼ Uni(1, 32) µs.

2) Update.2 Whenever a response is received
from a NS, the SRTT of that NS becomes
a weighted sum of the old SRTT and new
RTT value: SRTTupdate = 0.7 · SRTTold +
0.3 ·RTTnew. The new RTT value is the time
period from query origination to response
receipt.

3) Decay.3 In order to avoid starvation, for each
query the resolver produces, the SRTT of the
other NS candidates are multiplied with a
decay factor of 0.98.

4) Error.4 In case of an unanswered request, or
a network error (e.g. an ICMP “Destination
Port Unreachable” message is received), the
candidate name server is punished by adding
200 ms to its SRTT value (with a maximum
value of 1 s).

III. Related work

There are a couple of works that propose proba-
bilistic attack methods to derandomize name server
(NS) selection.

[Pet09] presents an attack which works by spoof-
ing DNS responses from a victim NS while reducing
the SRTT of that NS. By reducing its SRTT the
BIND resolver is more likely to choose that NS
for the next query. This attack targets the Update
operation of the SRTT algorithm.

In [HS12], the attacker sends to the resolver a
spoofed fragment of a DNS response originated
by a NS, making the reassembled response packet
corrupt. Hence, this response is discarded by the
resolver. After several failed attempts, the IP ad-
dress of that NS is marked by the resolver as
non-responsive and is blocked for interval of time.
The attack in launched on all but one NS from a
candidate set of NSs. The remaining NS will be the

1lib/dns/adb.c:1747 (new_adbentry)
2lib/dns/adb.c:3900 (dns_adb_adjustsrtt)
3lib/dns/adb.c:3898 (dns_adb_adjustsrtt)
4lib/dns/resolver.c:817 (fctx_cancelquery)

one to be queried next by the resolver. To carry
out the attack the DNS response from a victim NS
must be large enough to be fragmented. In BIND,
this attack targets the Error operation of the SRTT
algorithm.

IV. The Attack

Our attack exploits the Decay operation and
forces BIND to decrease the SRTT of any name
server we choose to an arbitrary low value. This
allows an attacker to have a BIND resolver query
a target NS of his choosing. The attack we present
does not require the attacker to spoof responses
on behalf of other NSes as in the other attacks
presented above. It is deterministic and does not
require guesswork from the attacker. Moreover, the
target name server is never contacted during the
attack and therefore it is unaware of it.

A. First variant

Prerequisites. The attacker owns two arbitrary
domain names correspondingly served by two NSes,
A1 and A2, which are under his control. The NS
A2 must have lower latency to the target resolver,
R, than the victim’s NS, V . Specifically, if the
attacker tries to lower the SRTT of name server
V in the cache of R, it is required that A2’s
SRTT value will be lower than V ’s SRTT value
(denoted as SRTToriginal). We note that these
two name servers, A1 and A2, can be anywhere on
the Internet, under this constraint.

Attack flow (see Figure 1).

1) The attacker inserts A2 to R’s SRTT cache.
This can be done, for example, by querying
R for the domain A2 is authoritative of, say
a2.foo.

2) R contacts A2 which returns the answer to
the attacker.

3) The attacker queries R for a domain name
that A1 is authoritative of, say a1.foo.

4) R contacts A1 which replies with a delega-
tion (namely, it refers R to other NSes) that
includes:

a) A fresh list of non-open name servers
(i.e. external clients do not have access
to their local cache), C1, . . . , Cn.

b) A name server A2.
c) A name server V .

5) R queries in turn all non-open name server.
All of them will refuse.



3

Figure 1.

6) R queries A2 which returns a valid answer.
7) R returns a valid answer to the attacker.

When the resolver receives the delegation (4), it
creates new SRTT entries for C1, . . . , Cn with a
low values (SRTTinit), thus they are queried before
A2 and V which already reside in the cache. After
n queries to the non-open name servers, according
to the SRTT algorithm, both A2’s SRTT and V ’s
SRTT will be 0.98n of their original value before
the attack (n decay operations). Before the attack
A2’s SRTT was lower than V ’s SRTT (as per the
prerequisite above), A2’s SRTT will also be lower
than V ’s SRTT after n decay operations, thus R
choose to query A2 before V . The iterative resolu-
tion ends by querying A2. Thus V ’s SRTT results
in a low bogus value (0.98n+1 · SRTToriginal).

B. Second variant

Prerequisites. The attacker owns an arbitrary
domain name served by NS A1, which is under
his control. Here the attacker is not required
to have a low-latency name server, however the
amount by which the SRTT value is decreased is
not deterministic. This may require the attacker
to initiate several, m, attack attempts to lower
the SRTT to the desired value. These attempts
require m servers A2,1, . . . , A2,m controlled by the
attacker (the attacker may choose to utilize the
same server for each attempt but in such a case
he has to wait for the SRTT entry of that server
to expire from the cache before initiating the next
attempt).

Attack flow (ith attempt).

1) The attacker queries R for a domain name
that A1 is authoritative of, say a1.foo.

2) R contacts A1 which replies with a delegation
that includes:

a) A fresh list of non-open name servers,
C1, . . . , Cn.

b) A name server A2,i.
c) A name server V .

3) R queries t non-open name server, where 0 ≤
t ≤ n. All queried name server will refuse.

4) R queries A2,i which returns a valid answer.
5) R returns a valid answer to the attacker.

When the resolver receives the delegation (2),
it creates new SRTT entries for A2,i and for
every non-open name server, with SRTTinit ∼
Uni(1, 32) µs. Thus A2,i’s SRTT must be lower
than V ’s SRTT. Therefore, A2,i will be queried
before V . However, the SRTT of A2,i may be lower
than some non-open name servers. We denote the
number of non-open names servers that has lower
SRTT by 0 ≤ t ≤ n. Therefore, according to
the SRTT algorithm, the attack reduces V ’s SRTT
by 0.98t+1. We note that t is a uniform random
variable with an average of n

2 .

C. Impact

As noted above, this attack allows to derandom-
ize the NS selection which can reduce the attack
time of blind (off-path) DNS cache poisoning. In
addition, the attack can help an attacker to act
as a Man-in-the-Middle (MitM), in cases where he
resides on the path between the resolver and only
one of the candidate name servers. In such cases
the attack can enable on-path poisoning. Moreover,



4

the attack may assist in Denial-of-Service (DoS)
of a specific target name server by directing more
queries to it.

We note that since the update operation of the
SRTT algorithm takes into account the previously
defined SRTT, the recovery is not instant, thus
subsequent requests to V will not cause it to im-
mediately revert the SRTT to its original value.

V. Evaluation

The first variant of the attack was evalu-
ated against BIND 9.8.1-P1. The vulnerability has
been reported to and acknowledged by ISC. A
description of how we evaluated the attack follows.

A. Lab setup

We tested the vulnerability on virtual machines
with the following setup:

192.168.19.201 An NS serving some zone
192.168.19.202 V (serving the same zone)
192.168.42.100 R
192.168.19.250 A1

192.168.42.251 A2

192.168.19.170-199 C1, . . . , C30

192.168.19.50 Mock root name server

Each machine ran Ubuntu 12.0.4.1 LTS. The
non-open NSes were actually one virtual ma-
chine with multiple IP addresses. A latency of
80 ms and a jitter of 10 ms between the
192.168.19.0/24 (which included V, A1 and Ci)
and 192.168.42.0/24 networks (which included R
and A2) were emulated using WANEm5. Note that
in this setup R’s latency to A2 is smaller than its
latency to C1, . . . , C30, as required.

B. Results

We dumped BIND’s SRTT cache using the com-
mand ’rndc dumpdb -cache’ which gave the fol-
lowing output:

• Before step (3) of the attack:

192.168.42.251 srtt 571 (A2)

192.168.19.202 srtt 39363 (V )
192.168.19.201 srtt 38738

192.168.19.50 srtt 80957

• After the attack (the entries of the non-open
resolvers are omitted)

192.168.42.251 srtt 747 (A2)

192.168.19.202 srtt 21029 (V )

5http://wanem.sourceforge.net/

192.168.19.201 srtt 38738

192.168.19.50 srtt 80234

192.168.19.250 srtt 49935 (A1)

The SRTT of V before the attack is 39363. The
SRTT of V after the attack is 21029 which is
approximately 0.9831 · 39363 as expected (it is not
the exact value due to floating-point to integer
casting).

VI. Conclusions

In this work we presented a newly discovered
vulnerability in BIND’s SRTT algorithm. A de-
terministic attack exploiting this vulnerability al-
lows an attacker to determine the name server
that will be chosen by a BIND resolver from a
set of a candidate name servers. This allows the
attacker to derandomize the IP address of the
queried name server in order to reduce the time and
effort required to successfully poison BIND’s cache.
The vulnerability stems from the fact that BIND
stores the SRTT of all name servers in a global
cache shared by all domain names. This allows
an attacker to influence the name server selection
for one domain name while issuing queries for a
different domain name. A possible mitigation for
the attack is to keep the SRTT entries separated
by domain names.

References

[HS12] Amir Herzberg and Haya Shulman. Security of
Patched DNS. In ESORICS, pages 271–288, 2012.

[HvM09] A. Hubert and R. van Mook. RFC 5452: Measures
for Making DNS More Resilient against Forged
Answers, 2009. http://www.ietf.org/rfc/rfc5452.
txt.

[Moc87a] P. Mockapetris. RFC 1034: Domain Names -
Concepts and Facilities, 1987. http://www.ietf.
org/rfc/rfc1034.txt.

[Moc87b] P. Mockapetris. RFC 1035: Domain Names -
Implementation and Specification, 1987. http:
//www.ietf.org/rfc/rfc1035.txt.

[Pet09] Emanuel Petr. An Analysis of the DNS cache
poisoning attack, 2009. https://labs.nic.cz/files/
labs/DNS-cache-poisoning-attack-analysis.pdf.

[Sas10] Geoffrey Sasson. DNS Survey: October 2010,
2010. http://dns.measurement-factory.com/
surveys/201010/dns survey 2010.pdf.

http://www.ietf.org/rfc/rfc5452.txt
http://www.ietf.org/rfc/rfc5452.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1035.txt
https://labs.nic.cz/files/labs/DNS-cache-poisoning-attack-analysis.pdf
https://labs.nic.cz/files/labs/DNS-cache-poisoning-attack-analysis.pdf
http://dns.measurement-factory.com/surveys/201010/dns_survey_2010.pdf
http://dns.measurement-factory.com/surveys/201010/dns_survey_2010.pdf

	Introduction
	The SRTT algorithm
	Related work
	The Attack
	First variant
	Second variant
	Impact

	Evaluation
	Lab setup
	Results

	Conclusions
	References

