

Abysssec Research

1) Advisory information

 Title : Java CMM readMabCurveData stack overflow
 Version : Java runtime <= 6.19
 Analysis : http://www.abysssec.com
 Vendor : http://www.java.com
 Impact : Critical
 Contact : shahin [at] abysssec.com , info [at] abysssec.com
 Twitter : @abysssec
 CVE : CVE-2010-0838

2) Not vulnerable version
Sun JRE (Windows Production Release) 1.6.0_19
Sun JRE (Solaris Production Release) 1.6.0_19
Sun JRE (Linux Production Release) 1.6.0_19
Sun JDK (Windows Production Release) 1.6.0_19
Sun JDK (Windows Production Release) 1.5.0_24
Sun JDK (Solaris Production Release) 1.6.0_19
Sun JDK (Solaris Production Release) 1.5.0_24
Sun JDK (Linux Production Release) 1.6.0_19
Sun JDK (Linux Production Release) 1.5.0_24
IBM Java SE 5.0 SR11 PF1
HP Systems Insight Manager 6.1

http://www.abysssec.com/
http://www.java.com/

3) Vulnerability information

Class
 1- Stack overflow
Impact
Successfully exploiting this issue allows remote attackers to execute arbitrary

code in the context of vulnerable application or cause denial-of-service conditions.

Remotely Exploitable
Yes

Locally Exploitable
Yes

4) Vulnerabilities detail

The vulnerability exists in readMabCurveData function of CMM module. In order to

better understand this function and its usage, it is better to examine java source. You

can download java update 18 source from

http://dlc.sun.com.edgesuite.net/jdk6/6u18/promoted/b07/index.html.

In path \j2se\src\share you have two important folder named class and native. In native

folder there are some source codes written in c or c++. On the other hand in classes

folder, java source codes exist. In fact some native function have implemented in native

folder similar to their java implementation. The implementation of classes and objects

which is used in java are implemented by native c source codes. Although; It is possible

for name variations between java and c source codes.

In path \j2se\src\share\native\sun\awt there is folder named cmm and if you search

expression readMabCurveData in this path, you can find it in only a unique file and it will

be \j2se\src\share\native\sun\awt \cmm\iomf.c .

http://dlc.sun.com.edgesuite.net/jdk6/6u18/promoted/b07/index.html

Well, we have found vulnerable function in the native code. Take a look at the function"

static KpInt32_t
readMabCurveData(KpFd_p fd, KpUInt32_t nChan, KpUInt32_p TblEntriesPtr, mab_tbldat_p *TablePtr, PTParaCurve_p
PTParaCurve)
{
mcurve_tcurveType;
KpInt32_tnSig, nTblEntries, nTotalEntries, nTblSize, startOfCurves;
KpUInt16_ttmpTbl [MF2_MAX_TBL_ENT];
KpInt32_tstatus, cOffset;
KpUInt32_t i1;
KpUInt8_tdummy;
Kp_get_position (fd, &startOfCurves);
nTblEntries = 0;

...
nSig = curveType.nSig;
#if (FUT_MSBF == 0)
 Kp_swab32 ((KpGenericPtr_t)&nSig, 1);
#endif
PTParaCurve[i1].nSig = nSig;
if (CURVE_TYPE_SIG == nSig)
{

 nTblEntries = curveType.C.Curve.nCount;
 #if (FUT_MSBF == 0)
 Kp_swab32 ((KpGenericPtr_t)&nTblEntries, 1);
 #endif

 nTblSize = nTblEntries * sizeof (mab_tbldat_t); /* size in bytes of each table */
 status = Kp_read (fd, (KpGenericPtr_t)tmpTbl, nTblSize); /* read the input table */
 if (status != 1) {
 return (status);
 }
...

As you see in the above code, Kp_read function read content of fd for nTblSize and store

it in buffer tmpTbl. Ther flaw here is lack of control on value of nTblSize before using. So

it can cause memory corruption.

The vulnerable function is compared by c source code. Now we take a look at it in

cmm.dll and compare it with the patched function. Our examinations show that

sub_6D185C75 function is equal to the our vulnerable readMabCurveData function.

Bye comparing readMabCurveData and the assembly code of sub_6d185c75 we

conclude that the assembly code of calling Kp_read which cause stack overflow is as

follow:

6D185EBB MOV EAX,DWORD PTR SS:[EBP-14]

6D185EBE PUSH EAX

6D185EBF MOV WORD PTR DS:[EBX-4],AX

6D185EC3 CALL cmm.6D18A0F5

6D185EC8 MOV DWORD PTR SS:[EBP-28],EAX

6D185ECB SHL EAX,2

6D185ECE PUSH EAX

6D185ECF PUSH EBX

6D185ED0 PUSH DWORD PTR SS:[EBP+8]

6D185ED3 CALL cmm.6D1877E2 ---------- Kp_read (fd, (KpGenericPtr_t)tmpTbl, nTblSize);

As you see in the code value from ([ebp-14]) is copied to EAX register and then a little

later it will be multiplied by 2 and is passed as the size argument to Kp_read function.

there is no control on the passed argument and can corrupt memory:

6D185ED2 mov eax, [ebp+var_18]
6D185ED5 push eax

6D185ED6 mov [ebx-4], ax
6D185EDA call sub_6D18A162

6D185EDF mov ebx, eax
6D185EE1 add esp, 0Ch
6D185EE4 test ebx, ebx
6D185EE6 jl loc_6D185F77

6D185EEC cmp ebx, 7
6D185EEF jg loc_6D185F77
6D185EF5 shl eax, 2
6D185EF8 push eax
6D185EF9 push [ebp+lpBuffer]
6D185EFC push [ebp+arg_0]
6D185EFF call sub_6D18784F ---------- Kp_read (fd, (KpGenericPtr_t)tmpTbl, nTblSize);

