MOAMUB

ABYSSSEC RESEARCH

1) Advisory information

Title : Movie Maker Remote Code Execution (MS10-016)
Version : moviemk.exe 2.1 (XP SP3)

Analysis : http://www.abysssec.com

Vendor : http://www.microsoft.com

Impact : Ciritical

Contact : shahin [at] abysssec.com , info [at] abysssec.com
Twitter : @abysssec

CVE : CVE-2010-0265

2) Vulnerable version

Windows XP SP2,SP3
Windows Movie Maker 2.1

Windows Vista SP1,SP2 and x64 versions
Windows Movie Maker 2.6
Windows Movie Maker 6.0
Windows Movie Maker 6.1

3) Vulnerability information

Class
1- Heap overflow

Impact
Successfully exploiting this issue allows remote attackers to cause denial-of-

service conditions or execute arbitrary code.
Remotely Exploitable

Yes
Locally Exploitable

Yes

4) Vulnerabilities detail

The vulnerable part starts at IsValidWMToolsStream function. In this function new is used to times for allocating
space. In both cases, values of Size needed for allocating memory is read from .mswmm file.

In first case after calling 'new' function, ExtractData function of CDocManager is read to fill the content of allocated
space. Content of this space is read from . mswmm file.

ExtractData function of CdocMnager class takes three arguments. First argument specifies a string that is to be
called. Second argument is a pointer to a space that known string from the first arguments is copied to it. And third
argument specifies length of data that should be read.

.text:011814C4 push [ebp+bstrString] ; unsigned int
.text:011814C7 call ??2@YAPAXI@Z ; operator new(uint)
.text:011814CC mov ebx, eax

.text:011814CE pop ecx

.text:011814CF mov [ebp+psz], ebx

.text:011814D2 mov [ebp+var_3C], ebx

.text:011814D5 mov byte ptr [ebp+var_4], 1
.text:011814D9 push [ebp+bstrString]

.text:011814DC mov ecx, esi

.text:011814DE push ebx

.text:011814DF push [ebp+var_30]

.text:011814E2 call ?ExtractData@CDocManager@ @QAEJPBGPAXI@Z ;
CDocManager::ExtractData(ushort const *,void *,long)
.text:011814E7 mov edi, eax

.text:011814E9 test edi, edi

.text:011814EB jge shortloc_1181503

Then in next steps 'new' function is used for the second time for allocating new space which then ExtractData
function is called for copying "WmtoolsValid"value to the allocated space.

.text:01181540 push [ebp+bstrString] ; unsigned int
.text:01181543 call ??2@YAPAXI@Z ; operator new(uint)
.text:01181548 pop ecx

.text:01181549 mov [ebp+var_14], eax ; ebp-14h = pBuffer
.text:0118154C mov [ebp+var_40], eax

.text:0118154F mov byte ptr [ebp+var_4], 2
.text:01181553 push [ebp+bstrString]

.text:01181556 mov ecx, esi

.text:01181558 push ebx

.text:01181559 push edi

.text:0118155A call ?ExtractData@CDocManager@ @QAEJPBGPAXJ@Z ; ExtractData(ushort const
* void *,long)

.text:0118155F mov esi, eax

.text:01181561 test esi, esi

.text:01181563 jge shortloc_118158A

If look at the above code carefully, you will notice second parameter of ExtractData function, is the pointer to the
space that allocated by first call to 'new' function and here is the vulnerable point. Because the allocated space to

the second call is not used and instead the same space which is allocated by first call is used. As there is no bound
checking on length of data that should be read from the file (third argument of ExtractData function), it is possible
to copy longer data than size of the allocated space of first 'new' call by manipulating this value in file which cause
an overflow.

This vulnerability can show itself in the first call after CDocManager::CSmartStream::Read function within the
ExtractData function.

.text:01180C07 mov esi, [ebp+arg_8]

.text:01180C0A mov ecx, [eax]

.text:01180C0C push edi

.text:01180C0OD lea edx, [ebp+var_14]

.text:01180C10 push edx

.text:01180C11 push esi

.text:01180C12 push [ebp+arg_4]

.text:01180C15 push eax

.text:01180C16 call dword ptr [ecx+0Ch] ; CDocManager::CSmartStream::Read
.text:01180C19 mov edi, eax

.text:01180C1B test edi, edi

.text:01180C1D jge shortloc_1180C34

.text:01180C1F or [ebp+var_4], OFFFFFFFFh

.text:01180C23 mov eax, [ebp+var_10]

.text:01180C26 test eax, eax

.text:01180C28 jz shortloc_1180C30

.text:01180C2A mov ecx, [eax]

.text:01180C2C push eax

.text:01180C2D call dword ptr [ecx+8] ; Crash Point
Exploit:

Note: Our vulnerability is a Heap Overflow class and Movie Maker 2.1 software doesn’t have DEP protection. As we
mentioned earlier, this vulnerability can show his face in the first call (call [ecx+8]) after
CDocManager::CSmartStream::Read function within ExtractData function. because this call instruction, calls one of
the inputs of vtable and because our overflowed data can overwrite values of this vtable, so the program crashes.

By these backgrounds in mind, the only thing to execute shellcode is to manipulate values of vtable properly to
execute our arbitrary address by calling [ecx+8].

