

Abysssec Research

1) Advisory information

 Title : Trend Micro Internet Security Pro 2010 ActiveX extSetOwner Remote Code Execution
 Version : UfPBCtrl.DLL 17.50.0.1366 (XP SP3)
 Analysis : http://www.abysssec.com
 Vendor : http://www.trendmicro.com
 Impact : Critical
 Contact : shahin [at] abysssec.com , info [at] abysssec.com
 Twitter : @abysssec

2) Vulnerable version
Trend Micro Internet Security Pro 2010 and prior version may also be affected

3) Vulnerability information

Class
 1- Uninitialized pointer code execution
Impact
Successfully exploiting this issue allows remote attackers to execute arbitrary

code or cause denial-of-service conditions.

Remotely Exploitable
Yes

Locally Exploitable
Yes

http://www.abysssec.com/
http://www.trendmicro.com/

4) Vulnerabilities detail

The extSetOwner function of UfPBCtrl.dll activeX takes a pointer as its only argument. The pointer is not

initialized before using and allows the attacker to transfer the control of the program to arbitrary

address that may contain shellcode.

Here is the vulnerable sub_51602160 function which has some role in processing the extSetOwner

function and takes extSetOwner argument as one of its argument:

.text:51602160 sub_51602160 proc near ; DATA XREF: .rdata:51605B08o

.text:51602160 ; .rdata:516064D0o

.text:51602160

.text:51602160 arg_0 = dword ptr 4

.text:51602160 arg_C = dword ptr 10h

.text:51602160

.text:51602160 push edi

.text:51602161 mov edi, [esp+4+arg_C]

.text:51602165 test edi, edi

.text:51602167 jnz short loc_51602172

.text:51602169 mov eax, 80004003h

.text:5160216E pop edi

.text:5160216F retn 14h

.text:51602172 ; ---

.text:51602172

.text:51602172 loc_51602172: ; CODE XREF: sub_51602160+7j

.text:51602172 push esi

.text:51602173 mov esi, [esp+8+arg_0]

.text:51602177 mov eax, [esi+0ACh]

.text:5160217D test eax, eax

.text:5160217F jz short loc_51602193

.text:51602181 mov ecx, [eax]

.text:51602183 mov edx, [ecx+8]

.text:51602186 push eax

.text:51602187 call edx

.text:51602189 mov dword ptr [esi+0ACh], 0

.text:51602193

.text:51602193 loc_51602193: ; CODE XREF: sub_51602160+1Fj

.text:51602193 mov [esi+0ACh], edi

.text:51602199 mov eax, [edi]

.text:5160219B mov ecx, [eax+4]

.text:5160219E push edi

.text:5160219F call ecx

.text:516021A1 pop esi

.text:516021A2 xor eax, eax

.text:516021A4 pop edi

.text:516021A5 retn 14h

.text:516021A5 sub_51602160 endp

As the above code demonstrate in the beginning of function the address which is sent to the function is

stored in edi register and checked if zero or not. If the address is zero or null the function returns, but in

case of not being a null address the conditional jump at address 51602167 is taken. If you follow the

code you will notice that at address 51602199 the function store the content of edi register to eax and

after incrementing eax by 4 and storing the contents of resulted pointer to ecx register, it call ecx

without any previous check.

So if we redirect edi register to a valid pointer, it is possible to transfer the program flow to our arbitrary

shellcode.

Exploit:

To exploit this vulnerability it is possible to use heap spray method to load our shellcode to memory and

after allocating heap and initializing it to nop slides and shellcode the attacker can transfer the control

to allocated heap by using proper pointer address to vulnerable extSetOwner function.

The point here is before using edi the function references its contents and after adding 4 to the pointer,

there is another reference. So for heap range of example 0x0a0a0a0a an attacker should find a valid

address in memory that contains value of 0x0a0a0a06 (0x0a0a0a0a – 0x4) ,so after referencing this

address and adding 4 ,the call ecx instruction will call 0x0a0a0a0a that is the address in range of our

allocated heap.

Here is an example that we have used a valid address containing our heap spray range address – 4 in

mshtml.dll.

target.extSetOwner(unescape('%ua5de%u3da6')); //mshtml.dll [0x3DA6A5DE] = 0A0A0A06

