
 Search

matousec.com (site map)
www.matousec.com

Home > Info > Articles

Articles
KHOBE – 8.0 earthquake for Windows desktop
security software
Plague in (security) software drivers
Introduction to Firewall Leak-testing
Comparison of top five personal firewalls
More about personal firewalls
Design of ideal personal firewall

KHOBE – 8.0 earthquake for Windows
desktop security software
Published: 2010/05/05

In September 2007, we have published an article about a
great disease that affected tens of Windows security
products. The article called Plague in (security) software
drivers revealed awful quality of kernel mode drivers installed
by all the major desktop security products for Windows. The
revealed problems could cause random system crashes,
freezes and in some cases more severe security issues.

Today, we reveal even more serious problem of the Windows
desktop security products that can be exploited to bypass a
big portion of security features implemented by the affected
products. The protection implemented by kernel mode drivers
of today's security products can be bypassed effectively by a
code running on an unprivileged user account. If you ever
heard of SSDT hooks or similar techniques to implement
various security features such as products' self-defense, we
will show you how to bypass the protection easily.

Contents:
Introduction
The goal of this paper
Original research
Why are user mode hooks insecure
SSDT hooking
The problem
Argument-switch attack to bypass checks of security software
Combined attack
Table of vulnerable software
Final observations and notes
Summary

Should software
vendors reward
independent
researchers for
finding
vulnerabilities in
their software?

Send

Poll

Yes, by money and
credit. (77.95%)

Yes, by credit only.
(11.64%)

No. (7.3%)

Other answer.
(1.79%)

Yes, by money
only. (1.7%)

more results

Info Projects Downloads Services matousec.com

KHOBE – 8.0 earthquake for Windows desktop security softwar... http://www.matousec.com/info/articles/khobe-8.0-earthquake-f...

1 of 10 5/5/10 5:25 PM

Introduction
The task of today's security software is to protect computers against malware and hacker
attacks. This kind of application is generally very complex because it is trying to protect its
users against threats of various kind. The security software use signatures and heuristic to
detect known viruses, rootkis and trojan horses.

Malware writers are skilled enough to write malicious software that bypasses these
detection techniques. To close this hole, modern security solutions implement HIPS and
other forms of behavior control and blocking.

Because there were not many documented interfaces and APIs in the past which allowed to
monitor and filter applications' activity in the system, many software vendors decided to
make direct modifications to the user and kernel code and data structures. These
modifications are often called as hooks. Today's security software often use tens of them to
implement their security features.

Kernel mode hook implementation in security applications were subject of our research in
2007. This research showed that most of security software vendors implemented their
kernel hooks very poorly and their applications were creating another holes into the
operating system instead of protecting it. A special tool, BSODhook, was developed to find
these vulnerabilities automatically. You can read more details about the research in Plague
in (security) software drivers.

After we disclosed the results of our previous research, many vendors fixed the bogus
implementation of their kernel mode hooks in reaction to the great publicity. This approach is
required again because without the pressure from the media, it seems that many vendors
are (again) absolutely uninterested in security holes in their software.

The goal of this paper
Most of security software perform their hooking on several well-known places. Some still
base their protection mostly on user mode hooks which are, as reminded later in this
document, faulty by design. Many vendors decided to alter the kernel part of system call
mechanism implementation. They modify contents of System Service Descriptor Table
(SSDT), which is often referred SSDT hooking. Other use different kind of kernel hooks for
example by modifying the kernel code directly.

The main goal of this paper is to present an attack technique, called the argument-switch
attack or KHOBE attack, that allows malicious code to bypass protection mechanisms of
security applications. The attack is effective against user mode and kernel mode hooks.
Because user mode hooks can be bypassed by simpler techniques, we focus on kernel
mode hooks bypassing only. In the further text we demonstrate the attack techniques on
SSDT hooks, which are the most common kernel hooks in today's security software.
However, the attack techniques need no change to succeed against the other kinds of
vulnerable kernel or user mode hooks.

For testing purposes, we have developed an engine called KHOBE (Kernel HOok
Bypassing Engine) which simplifies writing of the exploits. With KHOBE we were able, in
relatively short time, to verify that the presented vulnerability is an issue for many known
security products on the market.

Original research
The research devoted to the problems we present in this article started in August 2008.
Ten weeks later we finished it having a full documentation of the problem structured to three
separate documents:

The documentation of the problem and explanations of its aspects on examples of1.

KHOBE – 8.0 earthquake for Windows desktop security softwar... http://www.matousec.com/info/articles/khobe-8.0-earthquake-f...

2 of 10 5/5/10 5:25 PM

vulnerable implementations.
The documentation of possible solutions – how to implement all the requested
functionality safely.

2.

The documentation of KHOBE, the code library that can be used for fast and easy
creation of exploits against the vulnerable implementations. This part was supported
by various proof of concept exploits based on KHOBE.

3.

The full results of the research were offered to our clients and other software vendors. In
this article we use the parts of the first document to fully describe the problem. Other parts
of the research will not be disclosed publicly and remain available for our business clients.

Why are user mode hooks insecure
Applications communicate with the operating system kernel through functions exported
by various dynamic link libraries of Windows API, such as kernel32.dll, user32.dll,
advapi32.dll and ntdll.dll. These routines usually transmit execution flow to the lower
layer of the interface libraries. The layer on the bottom, represented by ntdll.dll (and
partially user32.dll and gdi32.dll), uses special instruction, such as INT 0x2E,
SYSENTER or SYSCALL, to call the kernel.

Various security applications place their hooks on the beginning of Windows API routines to
stop malicious code working. However, all dynamic link libraries belonging to Windows API
reside in the user mode portion of process' address space, hence the application code
might avoid calling them which effectively bypasses hooks made by security software. If the
application needs to communicate with the kernel, it can use the system call instruction
directly. And this action cannot be caught or prevented by any type of user mode hooking.

SSDT hooking
System Service Descriptor Tables belong to the kernel mode part of system call interface
implementation. They contain addresses of routines (referenced also as system services)
that user mode code can invoke indirectly as a result of the special system call instruction.
Through SSDTs, one can control every useful transition from user mode to kernel mode.
That is why they seem to be so suitable for implementation of real time protection and
self-defense.

Security software often modifies addresses stored in the tables to point to its own routines,
called hook functions or hook handlers. These routines perform various checks to find out
whether the call endangers the system or might be a threat to the security application itself.
In these cases, the hook handler blocks the call or asks user what to do. If the hook routine
considers the call as safe, it invokes original system service with same parameters it got
from the user mode application. This must be done without changing the context of the call.
Everything must be transparent to the original system service which expects no installed
hooks.

The following code snippet shows a sample hook handler for NtLoadDriver system service.
The handler attempts to block every attempt to load driver which service name is
"SampleDriver".

00 NTSTATUS NewNtLoadDriver(IN PUNICODE_STRING DriverServiceName)
01 {
02 NTSTATUS status=STATUS_SUCCESS;
03
04 if (KeGetPreviousMode()!=KernelMode)
05 {
06 WCHAR *buffer=NULL;
07

KHOBE – 8.0 earthquake for Windows desktop security softwar... http://www.matousec.com/info/articles/khobe-8.0-earthquake-f...

3 of 10 5/5/10 5:25 PM

08 __try
09 {
0A ProbeForRead(DriverServiceName,sizeof(UNICODE_STRING),1);
0B
0C SIZE_T name_len=DriverServiceName->Length/sizeof(WCHAR);
0D ProbeForRead(DriverServiceName->Buffer,name_len*sizeof(WCHAR),2);
0E
0F SIZET_T buf_len=(name_len+1)*sizeof(WCHAR);
10 buffer=(WCHAR*)ExAllocatePoolWithTag(NonPagedPool,buf_len,POOL_TAG);
11 if (buffer)
12 {
13 RtlZeroMemory(buffer,buf_len);
14 RtlCopyMemory(buffer,DriverServiceName->buffer,name_len*sizeof(WCHAR));
15
16 WCHAR *drv_name=wcsrchr(buffer,L"\\");
17 if (drv_name) drv_name++;
18 else drv_name=buffer;
19
1A SIZE_T drv_len=wcslen(drv_name);
1B
1C PWSTR pattern=L"SampleDriver";
1D SIZE_T pat_len=wcslen(pattern);
1E
1F if (pat_len==drv_len)
20 {
21 UNICODE_STRING pattern_name;
22 RtlInitUnicodeString(&pattern_name,pattern);
23
24 UNICODE_STRING driver_name;
25 RtlInitUnicodeString(&driver_name,drv_name);
26
27 if (RtlCompareUnicodeString(&pattern_name,&driver_name,TRUE)==0)
28 status=STATUS_ACCESS_DENIED;
29 }
2A } else status=STATUS_INSUFFICIENT_RESOURCES;
2B } __except (EXCEPTION_EXECUTE_HANDLER)
2C {
2D status=STATUS_INVALID_PARAMETER;
2E }
2F
30 if (buffer)
31 ExFreePoolWithTag(buffer);
32
33 if (!NT_SUCCESS(status))
34 return status;
35 }
36
37 status=OldNtLoadDriver(DriverServiceName);
38
39 return status;
3A }

Example 1: Vulnerable NtLoadDriver hook handler.

Firstly, the hook handler routine determines the origin of the call (line 04). Filtering is applied
only to calls coming from user mode. SSDT hooks are not very suitable for protection
against kernel mode threats and hence passing calls that come from kernel mode is very
common in hooking drivers. Then, the routine jumps to the try/except block where the
verification of the parameter is made.

The hook routine uses ProbeForRead function (lines 0A and 0D) to verify that the address
of the UNICODE_STRING parameter DriverServiceName, and the address specified in the
Buffer member of the structure, are pointing to user mode memory. If the application passed
kernel mode address to the NtLoadDriver system call, ProbeForRead raises exception
which the hook handler catches by the try/except block and indicates by setting status code
to STATUS_INVALID_PARAMETER on line 2D.

KHOBE – 8.0 earthquake for Windows desktop security softwar... http://www.matousec.com/info/articles/khobe-8.0-earthquake-f...

4 of 10 5/5/10 5:25 PM

If no exception occurs, the hook handler copies the name of the driver service registry key
to the kernel memory and compares it with the "SampleDriver" string, which stands for
malicious driver service, that should be blocked from loading. The try/except block catches
all exceptions that can be raised during copying of the DriverServiceName structure, which
might happen when the application specified address in user mode which points to invalid
memory region. You can read more about checking parameters of various types in Plague in
(security) software drivers.

The comparison of unicode strings is made on line 27. If the handler discovers that the
application is attempting to load the malicious "SampleDriver" driver, it blocks the call by
setting status code to STATUS_ACCESS_DENIED on line 28.

If the call originates from kernel mode or the verification finishes successfully, the hook
handler invokes the original system service and passes the original DriverServiceName
pointer as its argument (line 37). Then it returns status code of the call (line 39). Passing
original values of parameters to the system service is very important because its code will
also check their validity using try/except block and ProbeForRead function. The hook
handler must behave in a way that does not impact the execution flow of the original
function.

The problem
The code of system services runs on IRQL PASSIVE_LEVEL which also applies to their
hook handlers. Code running at this level can access pageable memory and, when the
scheduler decides, might be preempted by another thread. And the scheduler plays the key
role in the argument-switch attack.

The hook handler might be preempted at every moment of its execution. Imagine that the
context switch occurs just before the line 37 is about to be executed. At this point, all
security checks are done and the hook handler is about to invoke the original system
service. Before the scheduler switches back to the hook handler, many threads might use
the processor for some time, including other threads of the application that called
NtLoadDriver.

If another thread of the application is scheduled onto the processor, it might theoretically
change the driver service name passed to the NtLoadDriver call because the whole string
lies in user mode portion of address space. The execution of hook handler had advanced
too far to detect this modification and perform additional checks to stop malicious driver
from loading. When the scheduler switch thread context back to the thread executing the
hook handler, the original system service is invoked and might load driver which name was
not subject of any security check made by the security software. And this is exactly how the
argument-switch attack works.

Things get more simple on multiprocessor systems where two or more threads of the same
application might run really simultaneously and the context switch at the crucial moment is
not really needed. Today, multiprocessors or multi-core processors are very common
hardware in desktop computers.

In the following sections, the thread that invokes the system service will be called the
attacker thread and one that attempts to modify the parameters in order to bypass security
checks will be referenced as the faker thread. Surprisingly, the attacking technique may be
implemented even if the attacker thread runs in different process than the faker thread. In
further text, however, we limit our thoughts to a single attacking process only.

Argument-switch attack to bypass checks of security software
As shown in the previous section, the idea of the argument-switch attack is quite simple.
The attacker calls the system service with values of parameters that will certainly pass the

KHOBE – 8.0 earthquake for Windows desktop security softwar... http://www.matousec.com/info/articles/khobe-8.0-earthquake-f...

5 of 10 5/5/10 5:25 PM

checks made during the execution of services' hook handlers. When the faker thread gets
its time slice, it tampers the contents of the parameters to values that would never pass the
checks of the hook handler. If the tampering operation occurs after the security checks are
done but before the original service, which does the main work, is called, the attack is
successful.

So, one of the remaining questions is, which types of parameters can be faked and how to
achieve it. Generally speaking, there are three types of arguments passed to system
services:

integer values, boolean values, bit masks (access mask, flags etc.) and other
unstructured arguments;
pointers to flat buffers or more complex structures such as UNICODE_STRING or
OBJECT_ATTRIBUTES;
handles to kernel objects.

Parameters of the first type cannot be tampered by the attack – during the system call, they
are copied to the kernel stack, which is not accessible from user mode.

The idea of faking pointers was described for the example code of NewNtLoadDriver
function in the previous sections. The faker thread cannot modify the value of the pointer,
because it is copied to the kernel stack, hence not accessible from user space. However,
the pointer refers to a region in the user memory and contents of this region can be
changed. If the change occurs in the right time (after the security check but before the
execution of the original system service), the hook is bypassed.

The situation with handles is more difficult. Again, the value of the handle itself can not be
changed because it is copied to the kernel stack. What we can do, however, is to change
the actual meaning of the handle value. We will describe the attack on the example of
sample NtTerminateProcess hook. The handle type can be understood as a special type of
pointer (handles refer to kernel objects like pointers do to memory regions), so one can
conclude that the attack on handle arguments will have much in common with tampering
pointers.

Consider the following implementation of NtTerminateProcess hook handler. We assume
that the security software allows us to get handle with PROCESS_TERMINATE flag to the
protected process and that the level of defense lies only in this NtTerminateProcess hook
which blocks attempts to terminate process with PID saved in protected_process_id
variable.

00 NTSTATUS NewNtTerminateProcess(IN HANDLE ProcessHandle, IN NTSTATUS ExitStatus)
01 {
02 NTSTATUS status=STATUS_SUCCESS;
03
04 if (ProcessHandle && (ProcessHandle!=NtCurrentProcess) && (KeGetPreviousMode()!=KernelM
05 {
06 PROCESS_BASIC_INFORMATION info;
07 status=ZwQueryInformationProcess(ProcessHandle,ProcessBasicInformation,&info,sizeof
08 if (NT_SUCCESS(status))
09 {
0A ULONG pid=info.UniqueProcessId;
0B if (pid==protected_process_id)
0C status=STATUS_ACCESS_DENIED;
0D }
0E }
0F
10 if (NT_SUCCESS(status))
11 status=OldNtTerminateProcess(ProcessHandle,ExitStatus);
12
13 return status;
14 }

Example 2: Vulnerable NtTerminateProcess hook handler.

Unlike the NtLoadDriver hook example, validating of parameters does not require any
probing or copying, actions that must be performed within try/except block. There is no

KHOBE – 8.0 earthquake for Windows desktop security softwar... http://www.matousec.com/info/articles/khobe-8.0-earthquake-f...

6 of 10 5/5/10 5:25 PM

need to check ExitStatus argument, because every value is valid as the process exit code,
and the most of the required handle checking (ProcessHandle parameter) is performed in
ZwQueryInformationProcess call. The hook handler only checks the origin of the call and
whether the handle could be valid or does not point directly to current process. This
validation is performed on line 04.

If the handle seems to be valid and the call comes from user mode, the hook handler
routine tries to find out which process the handle belongs to. Basic information, which
includes PID of the target process, is retrieved on line 07 via call to
ZwQueryInformationProcess. This routine filters out handles of bad type or entirely
invalid.

The final check is made on line 0B where the PID of the target process is compared to PID
of the process protected by the security software. In case of equality, the return status code
is changed to "access denied" (line 0C) and the original handler is not invoked. Otherwise,
the original system service is called (line 11). It is left for the original service code to verify
that the handle was opened with PROCESS_TERMINATE access right, which is required
for terminating the process via this service call.

Similarly to the NtLoadDriver example, the success of the attack depends whether the
faker thread is able to alter the meaning of the ProcessHandle parameter when the attacker
thread is executing lines from 08 to 10, i.e. after the check of PID, but before the execution
of the original code. It seems that there is not much space for the attack, but in fact even the
first instructions of the function called on line 11 can be executed. All instructions in the
original function prior the handle value passed in ProcessHandle is dereferenced can be
executed without affecting the result of the attack. Moreover, it should be noted that unlike
our sample hook handler, hook handlers in security products are usually very complex and
there are many instructions to be executed between the security check and the original
function call.

The faker thread can not change the value of the ProcessHandle parameter, because it is
pushed onto the kernel stack before the hook handler is executed. However, it can change
the meaning. This is analogous to pointers – it is not possible to change their values but it is
possible to change the memory region they point to. Changing meaning of a handle is just a
bit more difficult than changing the contents of memory region.

The faker thread must destroy the handle passed by the attacker to the system call. This
operation must be performed after the hook handler successfully returns from
ZwQueryInformationProcess call, but before the original NtTerminateProcess is
executed. Then the faker thread opens a handle to the protected process with
PROCESS_TERMINATE access right (which will be allowed by security software due to our
assumptions made in the beginning). If we are lucky, the new handle will have the same
value as the closed one. In case the new handle is created before the attack thread reaches
line 11 and invokes original NtTerminateProcess, the attack succeeds and the protected
process is terminated. This sounds like a very unlikely thing to happen, but with a good
implementation, such as KHOBE, it is possible to effectively, i.e. in real time, attack pointer
arguments as well as handle arguments.

Combined attack
The previous sections illustrate how to bypass a single SSDT hook like NtLoadDriver or
NtTerminateProcess. However, some security products implement multi-level protection –
for example, they hook NtOpenProcess, where all attempts to get handle with
PROCESS_TERMINATE access right are blocked. Additionally, NtTerminateProcess is
intercepted to block termination attempts of those, who somehow obtained the handle with
sufficient access rights.

However, even two-level protection is not enough and can be bypassed by slightly modified
variant of the argument-switch attack. We will describe its semantics on the protection
scheme presented in the previous paragraph. We need one attacker and two faker threads.
During the initialization phase, a handle to the current process is opened with access rights
that prevent its use for process termination. Then the attacker thread invokes
NtTerminateProcess with this handle. This call is intercepted by the NtTerminateProcess

KHOBE – 8.0 earthquake for Windows desktop security softwar... http://www.matousec.com/info/articles/khobe-8.0-earthquake-f...

7 of 10 5/5/10 5:25 PM

hook handler. The hook handler finds out that the handle does not belong to any of the
protected processes. Hence, the termination operation is allowed and the original system
service is about to be executed.

Now, we need to use the standard argument-switch attack to bypass the hook of
NtOpenProcess. If this sub-attack finishes before the attacker is scheduled on the
processor again, the attack succeeds and the protected process is terminated.

At this moment, the attack needs scheduler to switch to the first faker thread which closes
the handle to our process opened during the initialization phase and tries to call
NtOpenProcess with PID of the current process again. The task of the second faker thread
is to change the CLIENT_ID argument to point to the protected process just after the
NtOpenProcess hook handler invokes the original system service. So the scheme of the
sub-attack is similar to the attacks described in previous sections – the first faker thread
plays role of the attacker thread and the second one acts as the faker thread.

If the sub-attack successfully finishes before the NtTerminateProcess system service
begins its execution and if the handle to the protected process has the same value as the
handle opened during the initialization, the combined attack succeeds and the protected
process is terminated.

If the single argument-switch attack was seemed to be a very unlikely thing to happen, the
combined version seems to be a miracle. Using KHOBE, however, we have proved again
that on multiprocessor hardware the combined attack can be performed again in real time,
the combined attack needs only few seconds to succeed.

Table of vulnerable software
We have performed tests with today's most Windows desktop security products. The
results are presented in table below. The results can be summarized in one sentence: If a
product uses SSDT hooks or other kind of kernel mode hooks on similar level to implement
security features it is vulnerable. In other words, 100 % of the tested products were found
vulnerable. The only reason there are not more products in the following table is our time
limitation. Otherwise, the list would be endless.

Product name and version Result
3D EQSecure Professional Edition 4.2 VULNERABLE
avast! Internet Security 5.0.462 VULNERABLE
AVG Internet Security 9.0.791 VULNERABLE
Avira Premium Security Suite 10.0.0.536 VULNERABLE
BitDefender Total Security 2010 13.0.20.347 VULNERABLE
Blink Professional 4.6.1 VULNERABLE
CA Internet Security Suite Plus 2010 6.0.0.272 VULNERABLE
Comodo Internet Security Free 4.0.138377.779 VULNERABLE
DefenseWall Personal Firewall 3.00 VULNERABLE
Dr.Web Security Space Pro 6.0.0.03100 VULNERABLE
ESET Smart Security 4.2.35.3 VULNERABLE
F-Secure Internet Security 2010 10.00 build 246 VULNERABLE
G DATA TotalCare 2010 VULNERABLE
Kaspersky Internet Security 2010 9.0.0.736 VULNERABLE
KingSoft Personal Firewall 9 Plus 2009.05.07.70 VULNERABLE
Malware Defender 2.6.0 VULNERABLE
McAfee Total Protection 2010 10.0.580 VULNERABLE
Norman Security Suite PRO 8.0 VULNERABLE

KHOBE – 8.0 earthquake for Windows desktop security softwar... http://www.matousec.com/info/articles/khobe-8.0-earthquake-f...

8 of 10 5/5/10 5:25 PM

Product name and version Result
Norton Internet Security 2010 17.5.0.127 VULNERABLE
Online Armor Premium 4.0.0.35 VULNERABLE
Online Solutions Security Suite 1.5.14905.0 VULNERABLE
Outpost Security Suite Pro 6.7.3.3063.452.0726 VULNERABLE
Outpost Security Suite Pro 7.0.3330.505.1221 BETA VERSION VULNERABLE
Panda Internet Security 2010 15.01.00 VULNERABLE
PC Tools Firewall Plus 6.0.0.88 VULNERABLE
PrivateFirewall 7.0.20.37 VULNERABLE
Security Shield 2010 13.0.16.313 VULNERABLE
Sophos Endpoint Security and Control 9.0.5 VULNERABLE
Trend Micro Internet Security Pro 2010 17.50.1647.0000 VULNERABLE
Vba32 Personal 3.12.12.4 VULNERABLE
VIPRE Antivirus Premium 4.0.3272 VULNERABLE
VirusBuster Internet Security Suite 3.2 VULNERABLE
Webroot Internet Security Essentials 6.1.0.145 VULNERABLE
ZoneAlarm Extreme Security 9.1.507.000 VULNERABLE

Final observations and notes
The argument-switch attack requires specific behavior from system scheduler which is
impossible to ensure from user mode. However, this fact does not affect the strength of the
attack too much. If the goal of the attack is to perform the action that the security software
always blocks, the attacker and faker threads might try the method many times till they
succeed. Our experiments show that in most cases, the attack succeeds after few attempts
and sometimes even the first attempt is successful. The number of attempts needed can be
radically lowered using smart manipulation of the threads' priorities.

The attack pattern described in this document does not, in general, use any feature present
only on privileged user accounts. This means, that successful attack might come even from
processes running under restricted user account.

We showed how the argument-switch attack works on the example of SSDT hooks.
However, this method might be used to exploit other types of hooks as well. It only needs
several conditions, which hold in most common implementations of hooks. The attack might
function also on hooks, which:

run on low IRQL with scheduler enabled, this condition theoretically is not needed to
be true on multiprocessor systems, where the attacker and the faker threads can run
on different processors simultaneously;
accept handles to kernel objects, or pointers referencing memory in user mode
portion of address space;
perform validity and security checks;
call original routines with unchanged values of the important arguments.

During our research we also focused on how to defend against the argument-switch attack.
We realized, that securing kernel hooks might be quite complicated task for security
software vendors, particularly for those which software uses huge amounts of SSDT and
other types of hooks. This paper does not disclose our solutions of the problem.

One might think that installing two security applications will protect against the argument-
switch attack. This makes, however, the situation even worse. Imagine that two security
applications, A and B, hooked the NtOpenProcess system service. When application tries
to open a process, the execution flow is intercepted by the hook handler installed by driver
of application B (this application hooked the service when it was hooked already by

KHOBE – 8.0 earthquake for Windows desktop security softwar... http://www.matousec.com/info/articles/khobe-8.0-earthquake-f...

9 of 10 5/5/10 5:25 PM

valid HTML 4.01 · valid CSS 2 · optimized for you · design by martina · powered by jan · generated on May 6, 2010

application A).

If the hook handler of B is not implemented securely against the argument-switch attack, it
gives no additional security to hook routine of A. It might even create additional security risk
for A. The hook handler of B might call the hook handler of A, but it does not have to; if B
calls original system service instead, the function of operating system is not affected (except
for performance), but A does not have a chance to perform its security checks.

On the other hand, if B wants to preserve the functionality of the A's hook handler and calls
it with original arguments then B's hook handler is vulnerable to the argument-switch attack
regardless the implementation of A's hook handler. So, unless A and B are implemented
perfectly and can rely on each other's perfection (which is a very strong assumption similar
to cooperation of two applications written by competitive vendors), A or B will be vulnerable
to the argument-switch attack. This is why installing more than one security product on a
single machine is a risk today even if their vendors claim the products to be compatible.

Summary
This paper presents attack pattern called the argument-switch attack which shows that
common implementations of kernel mode hooks are not secure. This attack represents
serious threat because many security software vendors base their security features on
hooking. We tested the most widely used security applications and found out that all of them
are vulnerable. Today's most popular security solutions simply do not work.

KHOBE – 8.0 earthquake for Windows desktop security softwar... http://www.matousec.com/info/articles/khobe-8.0-earthquake-f...

10 of 10 5/5/10 5:25 PM

