Multiple vulnerabilities in xrdp

Discovered by: Hamid Ebadi
CSIRT Team Member
Amirkabir University CSIRT Laboratory (APA Laboratory)

autcert(@aut.ac.ir

Introduction

Based on the work of rdesktop, xrdp uses the remote desktop protocol to present a
GUI to the user. The goal of this project is to provide a fully functional Linux
terminal server, capable of accepting connections from rdesktop and Microsoft's own
terminal server / remote desktop clients. (http://xrdp.sourceforge.net)

There are multiple buffer overflow vulnerabilities in xrdp which could be used by
malicious attackers to execute arbitary code on the system.

Vulnerable version
xrdp <=0.4.1

Vulnerability
There are multiple vulnerabilities in Xrdp server which may allow a remote attacker
to execute arbitary code.

1. A buffer overflow exists at line 880 in function “xrdp bitmap invalidate()”
which is defined in "xrdp/xrdp bitmap.c". This vulnerability could be
exploited when processing specially crafted requests. The technical details of
the vulnerability is as follows:

xrdp_bitmap_invalidate(struct xrdp_bitmap* self, struct xrdp_rect* rect)

{
char text[256]; //The variable which is overflowed later

if (self->password_char != 0)
{
g_memset(text, self->password_char, self->edit_pos);
text[self->edit_pos] = 0;
}
else
g_strncpy(text, self->captionl, self->edit_pos); //text is overflowed by long size edit_pos

Table 1 — Vulnerability in xrdp_bitmap_invalidate

Function “g_strncpy()” uses “self->edit_pos” as the size parameter for copying “self-
>captionl” into text. We can increase self->edit_pos value in xrdp_bitmap def proc()
function as described below. Since there is no limitation for self->edit _pos, attacker can

overflow text array when copying self->captionl into it. Successful exploitation allows
execution of arbitrary code.

Line 1205, xrdp_bitmap.c, xrdp bitmap def proc() function:

c = get char from scan code(param2, scan_code, self->wm->keys,
self->wm->caps_lock,
self-=>wm->num_lock,
self-=>wm->scroll_lock,
self->wm->session->client info->keylayout);

if ((unsigned char)c >= 32)

add_char_at(self->captionl, c, self->edit_pos);
self->edit_pos++; //edit_pos is incremented by one
xrdp_bitmap_invalidate(self, 0);

}

Table 2 — edit_pos can be controlloed by attacker.

There is also another attack vector wusing edit pos in /xrdp/funcs.c, in
xrdp_bitmap_def proc() function. There is no boundry checking in add char at() function
when this function try to insert a character (¢) in special position (self->edit pos) into
string (self->captionl).

/* returns error */

int APP_CC

xrdp_bitmap_def proc(struct xrdp bitmap* self, int msg,
int paraml, int param?2)

{

// code is summarized
if (pressed_key== (left or up arrow) || pressed key==(right or down arrow) ||
pressed_key==backspace || pressed_key==delete || pressed key==end || pressed key==home

)

{
//do proper action.
}

else

{

c = get char from scan code(param2, scan_code, self->wm->keys,
self->wm->caps_lock,
self-=>wm->num_lock,
self=>wm->scroll_lock,
self-=>wm->session->client_info->keylayout);

if ((unsigned char)c >= 32)

{

add_char_at(self->captionl, c, self->edit_pos);

xrdp_bitmap_invalidate(self, 0);
}

Table 3 — Another attack vector in xrdp bitmap def proc()

/* add a ch at index position in text, index starts at 0 */
/* if index = -1 add it to the end */

int APP_CC
add char at(char* text, char ch, int index)
{

int len;

int i;

len = g_strlen(text);
if (index >= len || index < 0)
{

text[len] = ch;

text[len + 1]=0;

return 0;
}
for (i=len - 1; i >= index; i--)
{
text[i + 1] = text[i];
}

text[i + 1] =ch;
text[len + 1] =0;
return 0;

Table 4 — add_char_at() implementation

2. Another vulnerability exists in the “rdp rdp process color pointer pdu ()”
function in "rdp/rdp rdp.c " file when xrdp tries to establish a connection to
another rdp server. In this function both ‘dlen’ and ‘mlen’ are initialized from
input data and both of these variables are used as the size parameter for
memcpy without any boundry checking, so attacker can overflow cursor->data
and cursor->mask. The technical details of the vulnerability is as follows:

/* Process a color pointer PDU */
static void APP_CC
rdp rdp process_color pointer pdu(struct rdp rdp* self, struct stream* s)
{
int cache idx;
int dlen;
int mlen;
struct rdp_cursor* cursor;

in_uintl6_le(s, cache idx);

cursor = self->cursors + cache idx;
in_uintl6_le(s, cursor->x);
in_uint16_le(s, cursor->y);
in_uintl6_le(s, cursor->width);
in_uintl6_le(s, cursor->height);

in_uint16_le(s, mlen); /* mask length */ //s is of type stream(see below)
in_uint16_le(s, dlen); /* data length */ //
in_uint8a(s, cursor->data, dlen); //Vulnerable code. cursor->data may be overflowed
in_uint8a(s, cursor->mask, mlen); //Vulnerable code. cursor->mask may be overflowed
self->mod->server_set cursor(self->mod, cursor->x, cursor->y,
cursor->data, cursor->mask);
}

“stream” is a structure to store input data.

/* parser state */
struct stream
{
char* p;
char* end;
char* data;
int size;
/* offsets of various headers */
char* iso_hdr;
char* mcs_hdr;
char* sec_hdr;
char* rdp_hdr;
char* channel hdr;
char* next packet;

)5

(134

“in_uint8a” is a macro to copy data from pointer “p” in stream to specified location

#define in_uint8a(s, v, n) \
{\
g_memcepy((v), (s)->p, (n)); \
(s)->p += (n); \
}
struct rdp_cursor
{.
nt x;
inty;
int width;
int height;
char mask[(32 * 32)/ §];
char data[(32 * 32) * 3];
15

In this vulnerability we confirmed the overflow but no crash happens here.

Workaround
There are currently no patches available for these vulnerabilities.

Credit
This vulnerability has been discovered by Hamid Ebadi from Amirkabir university
CSIRT laboratory.

autcert(@aut.ac.ir
https://www.ircert.cc

