[

RARLab’s WIinRAR

Local Stack Overflow
04-July-2006

Summary

WInRAR is an archive manager that supports a diverse range of formats. This
list of formats includes RAR, ZIP, CAB, ARJ, LZH, TAR, GZ, BZ2, ACE, UUE,
JAR, ISO, 7Zip, and Z.

While processing LHA files, WinRAR concatenates the directory-name and the
filename portions of an archive. Due to a lack of constraints while copying data,
two stack-buffer overflows can result.

Impact

These vulnerabilities are present by default in WinRAR. An attacker would need
to convince a WIinRAR user to open a specially crafted file. This file can have
any extension as long as WIinRAR is configured to process it. Successful
exploitation of these vulnerabilities results in code execution with the full
privileges of the current user. Since these exploits are stack based, and due to
specific code constructs, exploitation can be made reliable.

Affected software

WINnRAR — At least versions less-than 3.60 beta 7 and greater-than 3.0, although
others may be affected as well

Credit

These vulnerabilities were researched by Ryan Smith.

Contact
advisories@hustlelabs.com

Page 1 of 5

Details

The following code processes LHA extended-headers. For level-1 LHA headers,
the code reads in extra data from a file. The code then executes a switch
statement to jump to a location that handles the specific extended-header type.

(B16B2E12

1H16E2E1Z DigestHeader_LoopHead: . : CODE XREF
1H16B2E1Z2 141C cMp [ebs+i_LzHdo.Level], 2
(B16B2B1E 141C z short Toc_l&EB2B4A

1H16B2E18 141C =3 edu, [esptldBCh+sz0MHame]
1H16B2B1F 141C sub edy, [edil

1H16B2B21 141C cMp esi, edH

1H16B2B23 141C Ja short Cannot_Handle_Size
1H16B2B25 141C push [esp+14BCh+hFilel ; stream
tH16B2B28 1426 push esi PN,
tH16EB2B29 1424 push . § size
1H16B2B2E 1425 push dword ptr [edil : ptr
1H16B2B20 14ZC call _tread

(B16B2ES2 1420 add ezp, 18K

1H16B2B25 141C =101 ead, esi

1H16B2B2Y 141C an short loc_16BZ2B4A

(B16B2E39 .

1H16EB2E29 Cannot_Handle_Size: : CODE XREF
(B16B2E39 141C puzh 5]

(B16B2B3E 1426 puzh 4

tH16EB2B20 1424 call glb_PreparedStructure+2Ch
1H16B2B432 141C Hor =au, eay

(B16B2B4E 1410 amp loc_1&6B2C91

1B16B2EB4H ;

1B16B2EB4H

1B16B2EB4H loc_16B2B4A: ; CODE XREF
1H16E2E4H i # ProcessHe
1H16B2B4H 141C t=1N] edu, [edil .

1H16B2B4C 141C inc duword ptr [edil

1H16B2B4E 141C Hor ecH, ECH

1H16B2B5H 141C Ut=1] cl, [ed:]

1H16B2B52 141C and eci, HFFh

1H16B2B58 141C dec == .

1H16B2B59 141C Jz short Digest_FHAME
1H16B2B5E 141C dec == .

1H16B2B5C 141C Jz short Digest_OMAME
1H16B2B5E 141C sub eci, 3SE

1d16B2B61 141C Jz short loc_ 16BZ2BOO

(B16B2BES 1410 amp loc_16B2EFS

VA1 ERFRES .

Here the code reads in extended-headers of the filename type. The code reads
filename sizes of up-to OXFC bytes and stores this user-supplied data into the

szFilename buffer.

tB16EZEE

1B16E2BEE Oigest_FHAME: . ; CODE XREF: ProcessHdr+ZE1LJ
(B16B2EBES 141C crp esi, 186h

tB16EZBEE 141C Jl short loo 16BZEVE

(B1EB2EFR 141C [L1=11] esi, Fh

tB16BZEFE .
tB1E6B2EFE loc_1&B2BYE: ;: CODE XREF: ProcessHde+2FE1J
1B16B2EBFE 141C Hor EaH, =au

(B16B2EFY 1410 dmp short loc 1EBZBET

tB1EBZEFD ;

tB1EEZEFD .
{B16B2EFD loc_16B2E73: . ; CODE XREF: ProcessHdr+314p.i
tB1EB2EFS 1410 [J=1¥] edd, [edil

tB16B2EFE 141C =] cl, [edul

(B16B2EFD 141C and cl .

(B16B2EE2E 141C o [efu+ean+i LzHdr.szFileHamel, =l

1816B2EE4 141C inc dword ptr [edi

tB16B2EEE 1410 inz CE

tB16EZBEY .
1B16B2BET loc_16B2EETF: . ; CODE XREF: ProcessHdr+2FF1.
tB16B2EEY 1410 lea edd, [esi-2]

] zBg 41C crp ean, =du

tB16EZBEC 141C Jl short loc_1&BZEFS .
(B16B2ZE2E 141C o bﬁte ptr Cebx+es i+l i_LzHdr.0TSLastModif ied+311, &
1B16B2E2E 141C dmp short trw_next_hdr

SOME RIGHTS RESERYED

Page 2 of 5

The code in the following image is responsible for processing LHA extended-
headers of the directory name type. The code will copy a user-supplied buffer up
to Ox3FC bytes in length into the szDName variable.

H1EB2B95
H16BZB35 Oigest_DOMAME: ; CODE <REF: Processt
H16BZB35 141C CHp esi, 4EA@h
A1EEBZEB3E 141C Jl short loc 16BZ2BAZ
B16BZB30 141C it=1n] E5i, h
H1EBZ2BRAZ
H16BZEBAZ loc_1&BZBAZ: ; CODE <REF: Processt
Hl16BZBAZ 141C Hor =EH
H16BZEBRA4 141C Jmp Ehnrt lnc 1&6BZBETV
A1EEBZ2BRG ;
A1EEBZBAG
H16EBZEBAG loc_16BZEHE: . ; CODE <REF: Processt
Hl6BZBRASE 141C yl=1N] edn, [edil
Hlg6BZEBRAS 141C o cl, L[edw]
A1E6EBZEBAR 141C and cl, F
H16BZEBAD 141C l=1] [etpteas+14ACh+sz0Mane], cl
Hig6BZBE4 141C inc dword ptr [edil
Hlg6BzZBES 141C inc Ean
H1EEBZBEY
H16BZBEY loc_1&BZEEY: ; CODE <REF: Processt
H16BZBEY 141C lea edn, [esi-321
H16BZBEH 141C CHp ean, edx
A1&EBZBEBC 141C Jl short loc_ 16BZEREG
H16BZBBE 141C =1n] [Esp+esL+T4BEh+ucaFLlEData+BFFEh] 5}
Hlg6BZBCE 141C lea EaH, [Esp+14BEh+52DHamE] ; string
Blg6BZBCO 141C yt=1] L, " : value
B16BZBCF 141C call Replacechars
A16EBZE04 141C add esi, WFEEFFEFOQ
Blg6BZBOr 141C o [esp+14BCh+5z0Mam=], esi
B16E2EDE 141C Jmp short tru_next_hdr

The next image is the vulnerable portion of the code. The program takes the two
user-supplied values, one up to Ox3FC bytes in length, the other up to OXFC
bytes in length, and concatenates them into a buffer that is 0x400 bytes in length.
The code then copies the resultant buffer, up to 0x4F8 bytes in length, to the
szFileName buffer that is only OXFF bytes in length. This buffer mismanagement

results in two stack based overflows.

SB2C41 141C lea esi, [ebr+i_LzHdr.szFileMame]
push esi ; src
lea gar, [esp+ldidh+sz0MHame]
push == ; dest
call _strcat

add esp, o

lea ey [Esp+14BEh+52DHamE]
push edy P src
push esi ; dest
call _strcpy

add e,

add ebp, [esp+l14BCh+5z0Mame]

D 0 50 50 50 50 50 50 (50 (50 50

Page 3 of 5

LA

Remediation
The code should either truncate the strings, or allocate more space for the
strings.

Version 3.6 Beta 7 corrects the issue mentioned in this document. This version
should be installed in order to mitigate the vulnerability. If the old version must
be used, it may be possible to copy the Izh.fmt file from the new installer into the
current directory. As well, if LHA compression is not needed, the file Izh.fmt may
be removed from the installation directory.

Timeline of Events

04-July-2006 — Advisory draft date

11-July-2006 — Vendor notification

12-July-2006 — Vendor created a patch
13-July-2006 — Vendor released patched version
18-July-2006 — Advisory made public

Page 4 of 5

Attributions
The images of The Muppet Show’s Beaker and Dr. Bunsen were taken from
http://www.getbert.com, http://www.forskning.no and http://newsimg.bbc.co.uk.

Code and cross-reference screenshots captured using IDA
(http://www.datarescue.com).

Flawed code obtained from RARLabs (http://www.rarlab.com).

The Creative Commons license-notification image borrowed from
http://www.creativecommons.org.

License

This work is licensed under the Creative Commons Attribution 2.5 License. To
view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/ or
send a letter to Creative Commons, 543 Howard Street, 5th Floor, San
Francisco, California, 94105, USA.

Attribution should be provided both in the form of a link or reference to
http://www.hustlelabs.com and a copy of the researchers’ names listed under the
Credit section of this document.

All other trademarks and copyrights referenced in this document are the property
of their respective owners.

Page 5 of 5

	Summary
	Impact
	Affected software
	Credit
	Contact
	 Details
	Timeline of Events
	License

