Kaspersky Antivirus Library Rem@te Heap Overflow
Security Advisory

Date
October 2, 2005

Vulnerability

The Kaspersky Antivirus Library provides file format support for virus analysis. During analysis of
cab files Kaspersky is vulnerable to a heap overflow allowing attackers complete control of the
system(s) being protected. This vulnerability can be exploited remotely without user interaction in
default configurations through common protocols such as SMTP, SMB, HTTP, and FTP.

I mpact

Successful exploitation of Kaspersky protected systems allows attackers unauthorized control of
data and related privileges. It also provides leverage for further network compromise. Kaspersky
Antivirus Library implementations are likely vulnerable in their default configuration.

Affected Products

Dueto the library’ s OS independent design and core functionality: it is likely this vulnerability
affects a substantial portion of Kaspersky’s gateway, server, and client antivirus enabled product
lines on most platforms.

http://www.kaspersky.convproducts

Note: Kaspersky's antivirus OEM product line is a program where vendors may license the
vulnerable library. The following link isalist containing some of the Kaspersky partners with
products also likely affected by this vulnerability. Refer to your vendor for specifics.

http://www.kaspersky.com/oemsuccess

Credit
This vulnerability was discovered and researched by Alex Wheeler.

Contact
security@rem@te.com

COM

FEMMATE
1


http://www.kaspersky.com/products
http://www.kaspersky.com/oemsuccess

Kaspersky Antivirus Library Rem@te Heap Overflow
Security Advisory

Description
The vulnerable file format engine is responsible for parsing cab files. Specifically, the
vulnerability is the result of an improperly bounded copy loop in a core processing function.

This function is reachable while processing records after the initial cab header. For many types of
recordsthis function is passed a statically allocated heap buffer. By crafting a cab file with large
non-null records and particular header flags set, an attacker can corrupt vtables to execute arbitrary
machine instructions.

The following vulnerable code is from the cab.ppl file (current at the time of this writing -
v5.0.20.0):

Texti10003A80
SEENMTL OO0 AAD S B e T 3 HBPREE UFTHEIEN B it e iy T
LEXTI10003AAD
- Cext100032 80

LLext:l0003A40 CAB_read_record proc near 3 CODE »REF: sub_lo000z2AS0+15921p
L text:l10003A40 ; sub_looozceo+lsFlp L.,
L TEXT:10003A40
Jtext:l0003A80 war_1_tmp = dword ptr -1
.text:l0002Aa0 arg_0_CAB_FILE_Sstruct= dward ptr 4
Jtext:looo3asn arg_4_dst = dword ptr &
L text:10003A40
* L text:lonosso push 2O
* text:lonolasl push ehx
* L TexTIl0002A87 Mo ebw, [esp+E+arg_4_dst]
* L textil0on03ass push ehp
* L LExL:l0002A87 push &5
* L text:l0ono3fas Moy esi, [esp+loh+arg_0_CAB_FILE_struct]
* o text:l0003AsC push edi
* L TEXTIL0002AMD Mo bywte prtr [esp+ldh+war_1_tmp], 0
* Ltext:l0003ABZ wor edi, edi
* L CexT:l0002AEB4 Mo ehp, ehx
SCextil0003ABE
.text:10003AEE loc_10003AEG: ; CODE =REF: CaAE_read_record+33]]
* L text:l0O003ABS Mo gax, [&51]
* L text:l0003AEBS Tea ecx, [espt+ldh+wvar_1_tmp]
* L TexT:l0002ABC push [=labs ; dst
* Ltext:l0003ABD push esi 5 CAB_FILE struct
* Ltext:l0003AEBE inc edi
* L text:l0003ABF call dword ptr [eax<+18h] ;3 CAB_fread_byvte
* text:lo0oAcE Mo al, byte ptr [esp+lcCh+war_1_tmp]
* L TEXTILl0002ACE add gcp, =
* Ltext:lono3acs test ehx, ehx
* L TexTI1l0002ACE i= short loc_lo00zaDl
* Ltext:l0003acD Mo [ebp+n], al
* L text:looo2Ano inc ehp
SCextil0002A01
Jtext:l0003AD01 loc_10003AD01: ; CODE =REF: CaAB_read record+zElj
* L texT:l0002A01 Cest al, al
* Ltext:l0003AD03 inz short Toc_lo003ABS
* L text:l0002AD0C mo edwx, [E51]
* Ltext:l0003ADF Tea eax, [esp+ldh+wvar_1_tmp]
* L text:l0003AD0E push Ea
* L TEXTILl0002AD0C push a5
: LLExT:10002AD0D inc edi

.text:10003ADE calil dword ptr [ed=+15h]

COM

FEMMATE
2



Kaspersky Antivirus Library Rem@te Heap Overflow
Security Advisory

The disassembly above approximates to the following source.

static int CAB_read record(CAB_FILE__struct *cfs, BY TE *dst) {

BYTE tmp = 0;
int count = 0;
do {
count++;
cfs->CAB_fgetc(cfs, &tmp);
if(dst) {
*dst =tmp;
dst++;
}
} while(tmp);

Return count;

}

The above code is not good because it copies until a user controllable value is reached, regardless
of the destination’s size...like strcpy().

LOM

FEMMATE
3



