Attacks on Local Searching Todls

Seth Nielson Seth J. Fogarty Dan S. Wallach
sethn@cs.rice.edu sfogarty@cs.rice.edu dwallach@esetlu

Department of Computer Science, Rice University

1 Introduction

The Google Desktop Seardls an indexing tool, currently in beta testing, designed ltonausers fast,
intuitive, searching for local files. The principle intes&ais provided through a local web server which
supports an interface similar to Google.com’s normal welpepandexing of local files occurs when the
system is idle, and understands a number of common file typeptional feature is that Google Desktop
can integrate a short summary of a local search results wiihg{®é.com web searches. This summary
includes 30-40 character snippets of local files.

Despite the obvious usefulness of local searching, thesd&an considerable discussion about the privacy
implications of local indexing systems like the Google DiepkSearch. Fundamentally, indexing systems
make data access easier for legitimate users without al&nqé easier for unauthorized individuals.
Additionally, some do not consider the authors of such saféwto be trusted parties and fear that the
applications might leak information to corporate entities

Google Desktop Search was created and is marketed with $keeseity concerns in mind. Not only are a
number of security features evident in this tool, but theéranliterature provided by Google is emphatic
about the safety of a user’s private information. It shoutdnoted that the Google Desktop Search is
designed to be used on single-user machines running Windmsvan administrative process it can, and
does, index all files regardless of owner. Obviously thisiaaceptable on multi-user machines.

In our research we searched for a vulnerability that wouldase private local data to an unauthorized
remote entity. Our focus was on the small snippets of loct tiaat the integration feature handled. We
realized that this feature was combining local private deita remote public data in a possibly unsafe
environment. We present two different attacks that exphig vulnerability.

The remainder of this report is structured as follows. Ingbeond section, we describe the operation of
the Google Desktop Search in greater detail. In the thirdfamdh sections, we describe our attacks on the
integration feature. The fifth section presents our anglgkthe situation and discusses possible solutions
as well as the solution chosen by Google.

*This paper may be cited as Technical Report TR04-445, Dmyeaitt of Computer Science, Rice University. When more
information is available, it will be posted http://seclab.cs.rice.edu .

New!

G Web Images Groups News Froogle Desktop more »
{ l | Advanced Search
O L .) e IfOO Search Preferences
Web Results 1 - 10 of about 8,670,000 for foo [definition]. (0.25 seconds)
275 results stored on your computer - Hide - About Sponsored Links

'_‘9 D. Migrating Gallery - Warning: fopen (albums/foo/album.dat - Oct 18

cltkDMain.c - wrong #args: should be \argv[0] foo.cmo args - Sep 19, 2002 Kentrox Cables

950 Series DE9P to DB25P 5 Foo

Product search results for foo Hardware at PricingNetwork.com
. rork.c
@ To Wong Foo, Thanks For Everything! - To Wong Foo Thanks For ... - $9.09 WWw.pricingnetwork.com
- CD Universe

Pair of Bronze Foo Dogs

Home Decor - Others

Home and Garden at PriceGrabber
www.pricegrabber.com

FOO FIGHTERS - ONE BY ONE See your message here...

... 07.10.2005, Naas, Co. Kildare, Ireland, See all tour date details! RAB E-CARD.

Foofighters.com has full coverage of tons of shows, and other Foo Fighter events! ...
www.foofighters.com/ - 20k - Dec 16, 2004 - Cached - Similar pages

Best of Foo Fighters: Signature Licks (Bk & CD) - $22.95 -
Barnes & Noble.com
Japanese Sterling Foo Lion Menuke Cufflinks - $200.00 - GoAntiques

Figure 1: Google Desktop’s integration of local searchltesato web searches.

2 Background on Google Desktop Search

After installation on a local host, the Google Desktop aggilon begins indexing local files. The current
beta version indexes a variety of common files, includingrisBoft Word, Excel, and PowerPoint, email
stored in Outlook or Outlook Express and AOL instant mesgagonversations [3]. The indexing process
generally consumes system resources only when the systdia.is

Queries against the local search index are performed thrawgeb interface. The Google Desktop appli-
cation installs a local web server and the user interfaceasiged by web pages served by this internal
server. The layouts of the desktop search and the retursettsgages are almost identical in style and
form to the Google.com web search and results pages.

One unusual feature of the Google Desktop application igtiegration of local result snippets into remote

Google.com web searches. If this option is enabled, whemrapsforms a search at Google.com, his or
her results page is modified to display a small number of niagalesults on the local computer along with

very short, 30-50 character, snippets of the matching Egtre 1 shows an example of this feature. When
the user performed a search for “foo,” a single web page ptedehe results of local searches, product
searches, sponsored advertisements, and normal web esaildfis level of search integration allows the
user to find what he or she is looking for without making eacthose queries individually.

2.1 Privacy objectives

Google states that “We treat your privacy with the utmospeets The Google Desktop Search program
does not make your computer’s content accessible to Goagéenymne else” [3]. The privacy policy
elaborates, “Your computer’s content is not made accesgiBoogle or anyone else without your explicit
permission” [4].

To protect the Google Desktop application from being usedrfalicious purposes, it was designed to be
inaccessible to remote users. The local web server onlyp&ccennectionso localhost 0r127.0.0.1
regardless of the source address. By ignoring the sourceesglénd accepting packets based strictly
on the destination address the web-server sidesteps thkeprof source-address forging. Only network
connections originating on and connecting to the local nmecwill ever be seen as connecting to localhost.
This design clearly and elegantly prevents external coerpdtom directly querying the local web server.

2.2 Desktop integration

In our study, we decided to further examine the local seantdgration feature of the Google Desktop.
We wanted to learn how this feature operated, as it seemednaiging avenue of attack. If an external
attacker could read the local search integration resugisifieant private information would be leaked. If
the attacker could choose the search terms, this attacll beyparticularly damaging to users, particularly
those who keep sensitive information, such as passwordgadit card numbers, stored in their private files.

According to Google,

Desktop Search allows you to simultaneously send your queetwo different programs and

locations. One query goes to Google, which performs a stdr@aogle Web Search. A dupli-

cate query goes to the Desktop Search application runningpencomputer, which searches
the information the application has indexed for you. Degk$@arch intercepts Google’s re-
sults page before you see it and adds your Desktop Seardtsnest above your web results
S0 you can see both at once. [5]

The raw HTML seems consistent with this explanation. Thallsearch results appear to be a normal part
of the file. No JavaScript, frames, or other directives towled browser were used to integrate the local

results with the web results. To gain a better understanafitngw the integration worked, we conducted a

number of experiments.

2.2.1 Network sniffing

Our first experiment with the integration feature was to $jngapture the network packets of a Google
query. This could determine if any local information wenepthe network. We used Ether&& monitor
communication between our local computer and Google. Waupagh traces of Google searches on two
different computers, one on Rice’s network and one on aferilZesL connection at home. Likewise, we
captured plain text sessions (HTTP/1.0) and gziped (HT.IPAessions. We discovered that:

1. The Google Desktop Search does not transmit private daiagda web search.

2. None of the response packets from Google captured bydzhead any of the integration data.

1Available athttp://www.ethereal.com

In other words, we verified that integration is indeed a |lagration. We now knew that some agent was
running locally on our machine that would intercept incoghBoogle result pages and integrate the results
from local indexing. Two questions remained. We were notatewhere exactly integration happened,
and we did not know what triggered the local search.

2.2.2 Replay reconnaissance

Google’s explanation of local result integration seemesuggest that the integration was initiated by the
originating page, sending off two different requests. EthEcannot detect packets sent on the loopback
interface, so that remained a possibility. Two other lolgigaions were that it was triggered by the outgoing
request or the incoming response.

To determine the answer, we used Ethereal to save severglléspacket traces to disk. These packets
contained the response to a previous Google search for srmeSearch. To feed these back to the
browser, we wrote a simple Python script that would acceptIPiproxy requests but would then always
replay the packets that we had previously captured.

We then opened a browser and configured it to use our proxerseWe pointed the browser t@ww.
google.com ,and entered a different sear@e@rclg). As a result, the proxy server returns the results for
Search, but the local search results f8earcly were integrated with the web page. Thus, the local search
engine only considers the outgoing request, not the inboespbnse, for determining its own search query.
We also observed that the integrated results seemed to éreidglirectly after the second TCP response
packet, thus simplifying the matter of modifying packets a@ealing with the compressed HTTP/1.1 data
stream.

2.2.3 Socket scrutiny

We knew where local search results are integrated, and we where the local search engine got its query.
However, we needed to know what conditions were necessdrigger this process. We were curious if
any HTTP request to Google by any program running on the sisggichine would trigger integration, or
if the request need originate from the main Google.com weje phikewise, we were curious whether the
integration would occur even when a web browser was confibuarese a proxy server rather than directly
connecting to Google over the Internet. To test this, we @veosimple Python script that would open a
socket to Google.com and execute a search request. Wergjmait@empted submitting a request through a
proxy. We found that both the direct request and the proxeggiest would both have local search results
integrated. From this, we conclude

1. Google Desktop must be observing all outgoing networkeotions.

2. Google Desktop performs packet analysis to identify HpidXy connections in addition to looking
for direct connections to Google.

3. The search requests did not need to originate from a welskrovisiting Google.com.

User Machine

www.google.com

Browser App

|
)G)
Proxy Server 1

1

Network Stack

GDS

1\ y

Figure 2: Normal operation of Google Desktop Search. GD&tefpts all outbound network connections
and integrates local search results with Google web queries

4. Integration is triggered by observing outgoing packats] occurs after packets are received, but
before they are given to the web browser or application.

Figure 2 describes our understanding of this process.

The challenge, from the perspective of an attacker, is toenmatiegration-triggering network connections
fromthe target’s computer and to read the results after integragts occurred.

3 Java applet attacks

Because the Google Desktop application bases its decisimnegrate strictly on network traffic, all that
is required for an eavesdropper to obtain an integrated \agb [to open a socket on the target computer
and send an HTTP request to Google.com, either directlyroutfih any server configured as a web proxy
server. This is well within the capabilities of a Java apmeen when running with the restrictive “sandbox”
security model.

Downloading and running a Java applet is an automated mdoesanost Java-enabled web browsers.
Thus, any web page a victim loads off of a hostile server malyde a malicious Java applet. This applet
will be downloaded and executed inside the web browser witheer intervention. Such Java applets are
normally used to implement a variety of features, not atgldhrough regular HTML and JavaScript, that

range from user interface widgets to complex games and dioinsa

The Java “sandbox” security model places a number of réstm on untrusted Java applets that ensure
they are safe to run. In particular, applets are not alloveetkad or write any local files, nor are they
allowed to make network connections to any host beyond tleetloey originated from. While numerous
security holes have been found in Java [2], we do not expigitcd these holes to effect an attack. Once
the malicious applet starts running, the attacker can usenitake queries against the local search engine

User Machine @] = e e ;e . .. = === .

1
Browser] WWW-goggle.com 1
1 (Optional) :
GDS ----- :— - -

1

[|

Applet Origin
Server
Network Stack

1\ J

Figure 3. A Java applet, legally connecting to its originveer can fool the Google Desktop service into
integrating local search results into non-Google pages.

until the entire browser application is closed. These @sewill return the snippets of text the integration
feature provides.

3.1 Implementation

To accomplish the attack, we took advantage of the Java tapplality to connect to the machine from
which it is loaded. That machine, under the control of thackier, can run a web proxy server of the
attacker’s design. The applet can legally connect to theypserver and make requests for the proxy to
fetch results from Google.com. The proxy can return thelte$wm any previous Google page, as those
results will not actually be used. The Google Desktop’s ll@earch integration cannot distinguish this
connection from the Java applet with a legitimate connadiiom a web browser, and will thus integrate
the search results where they can be read by the applet. @fezahe applet can subsequently transmit
these results back to the server from which it was loaded. idgraim this process in Figure 3.

In our implementation, we designed the applet to first opeordrol channel with the server. This allows
the server to issue search queries to the applet. When appéates one of these queries, it connects back
to the server, as described above, to make a proxy requestiaedquently capture the local search results.
These results are returned to the server over the contrahethaThis gives the attacker real-time control
over the applet, allowing him to try a number of different qes and to refine them with the results of the
earlier queries. Thus the attacker can search interagtigelsensitive, private, information on the target
computer.

3.2 Feasibility

The main impediment to performing this attack is to somehiek the user of the target computer to visit
a hostile web site. Of course, the attacker could break irdq fleface) a legitimate web site that the target
user regularly visits. Likewise, the attacker could parf@ome kind of social engineering, perhaps with
spam-like email advertisements, to entice the target osasit the hostile site.

Once the target user loads the hostile page, the damage érasibee. There is no need for the attacker
to be on the same network as the target, nor is there any nedlkefattacker to “break into” the target
machine in any traditional fashion. Furthermore, becalls# the interaction between the target machine
and the attacker uses standard web traffic, most commenaalafis would offer no protection against
this attack. Of course, if the user has disabled Java, oriedil has filtered out any Java applets, then
this attack would fail, although similar attacks might besgible with other programmable content types
like Macromedia’s Flash. On the other hand, if the user hashiied local search integration with web
searches, the attack would be completely defeated. Thigreqglires deselecting a single checkbox on the
“preferences” screen.

3.3 Man-in-the-middle variants

In many cases, an attacker will be in a position to observendteork traffic coming from the target’s
computer and can inject network traffic that pretends to cfsore Google or any other network host. Such
“man-in-the-middle” attacks are particularly easy to peri when the attacker and target are sharing the
same 802.11 wireless network. These networks are incgdgsavailable in many hotels, airports, and
cafés and do not use any 802.11 security features such asgwieyption. Even on a private network with
WEP encryption, an attacker could easily break the enaygil].

The attacker’s goal, in such a scenario, will be to trick theyét computer’'s web browser into loading
the attack applet within an unrelated web page. This takeardage of a common practice, particularly
with web advertising, where web sites will include Java afspbr Flash animations hosted by third parties.
While a number of techniques may be used to accomplish thekatprobably the simplest is to passively
read every web page loaded by the target, looking for rebe®eito external applets. Upon seeing this, the
attacker can predict that the target will make a DNS lookugHe applet host. The attacker then issues a
DNS response that maps that DNS name to the attacker’s IRssldEventually, the correct DNS response
will arrive, but the target machine will discard it and fetitte applet from the attacker. A sophisticated
attack applet could be engineered to impersonate the atigpplet; the attack could even be implemented
as a virus attached to the original applet.

While web sites could take countermeasures to defeat tlaiskasuch as operating entirely with SSL/TLS
encryption and authentication, this seems unlikely to baéelyi adopted. Instead, users of wireless net-
works could tunnel all of their traffic through a virtual pate network (VPN). VPN systems are generally
provided by corporations to allow traveling users to actkeesompany’s intranet while traveling outside.
VPN technologies would defeat man-in-the-middle oppaties on the target's local wireless connection.
Unfortunately, VPNs are generally only available to cogterusers. Furthermore, some wireless systems
restrict the ports where they will carry traffic, sometimeteifering with some VPN systems.

4 JavaScript-based attacks

In many organizations, the use of Java or other generaligraromable plugin systems like Macromedia’s
Flash is forbidden. Such organizations are uncomfortalitte thve risk that a crafty attacker could circum-
vent the protections enforced by these tools. By banninggth@ols, a possible vector of attacks is removed.
In practice, while this might degrade the experience of maely sites, most will continue to operate cor-

rectly. Because many users do not have Java or Flash imstdlkdl, even the most multimedia-laden web
sites will commonly offer a simplified, plain HTML view. In otrast, the JavaScript scripting language
is used extensively by numerous web sites and is widely stggbddy commercial browsers. Disabling
JavaScript renders many such web sites unusable. As swebulid be valuable, from the perspective of
an attacker, to discover an attack that need not rely on Java.

4.1 Ley’s attack

Ley recently described an attack that takes advantage afjl€eaveb customization features [7]. For web
sites that use Google to “power” their site searches, Gqugides an interface for sites to add their logos
and such to the Google results. Ley used this feature totinj@dicious JavaScript into a Google web
page which would implement a “phishing” attack. Similathjis inserted JavaScript could also be used to
read other contents of a Google web page, including anyriatied local search results, and send them to a
third party. Google’s web servers now filter out any Javg$ar VBScript references passed through the
customization interface, thus defeating Ley’s attack.

4.2 Man-in-the-middle variants

Despite Google having closed Ley’s security hole, if anckiéa is appropriately positioned in the network
to perform a man-in-the-middle attack (see Section 3.3 attacker should be able to modify any page
transmitted from Google to include malicious JavaScriphe Document Object Model (DOM) allows
scripts of this kind to fully traverse and extract all elertseof the HTML page. A script can return the
extracted elements to the attacker in a number of ways, dirgjupassing them as arguments to a CGl
script on a colluding web server.

In the same fashion that our Java attack used forged DNStgdsuttrategically redirect queries from
legitimate web servers, we could similar interpose whemgeténost’'s web browser does a DNS lookup on
www.google.com ,redirecting the target to the attacker's machine. Thelgtawould then dispatch the
query to the real Google server, add in some malicious JaygSand pass the results to the target.

The malicious JavaScript, as in the Ley attack, would readctimtents of the local search results, and
transmit the results back to the attacker, perhaps by ogenizero-height internal frame (IFRAME) that
would not be visible to the user. Furthermore, the page metiiby the attacker could easily be redirected
to perform another Google query. The attacker would thusbiieta make interactive queries against the
local search service without the target machine’s usemgmivare of the attack.

4.3 Implementation

We designed a “proof-of-concept” of this attack to studyviability. Using our wireless network, we
programmed a laptop to listen for DNS requestsvisrw.google.com and respond with the IP address
of the laptop. This places the attacker in the position ohdpei (transparent) proxy server between the
target and Google. We had the proxy insert JavaScript whighldvattempt to read the integrated local
search results.

Our JavaScript successfully read the local search resuttseprinted it at the bottom of the web page as
proof that we could, indeed, extract the local results. Witatfevas unnecessary, for the proof-of-concept,
to transmit it back to the attacker. (The open-source DN&cking tool we usedinshijackef, has been
ported to numerous platforms and is very easy to use.)

4.4 Feasibility

Google appears to have fixed Ley’s JavaScript vulnerabilitythe man-in-the-middle attack is still entirely
feasible, particularly when the target computer is usingireless network and the attacker is physically
nearby.

Making the attack interactive is much more complicated andentikely to be detected. To be interactive,
the JavaScript must pop-up or “pop-under” another windoat dilows the attacker some modicum of
control over Google searches (although this might be sstdshidden in a zero-height IFRAME). For
the attacker’s server to instruct the target machine wraathdo perform next, the JavaScript must poll for
new instructions, perhaps by refreshing at regular interv@uch behavior might increase the likelihood
that the attack is detected.

As described in Section 3.3, users and web sites can takéstmeasures to reduce their exposure to man-
in-the-middle attacks. If Google, for example, were to of# of its services over SSL/TLS and users
exclusively visitedhttps://www.google.com rather than théittp version, the man-in-the-middle
would be unable to put the hostile JavaScript into the welepag

5 Attack analysis

Both versions of our attack, whether using Java or JavaStalge advantage afompositioneffects. Java,

by itself, has a security policy that gives applets a limigdlity to make network connections. When
used in traditional web pages, this allows applets to haeéulbehaviors without compromising a user’s
security. Likewise, the Google Desktop’s local searchgragon feature, by itself, injects local search
results into web queries, giving users an improved searphrience. So long as network connections are
only coming from “trusted” sources, like a web browser, ¢hisrno danger of the local search results being
leaked. However, when an attacker composes these two sdteerattacker can use a property of applet
security to help violate a property of the Google Desktopsusity. Such composition effects are one of
the most difficult issues in the engineering of secure softyvan attacker need only find a single unusual
combination of features to accomplish an attack, while §ysesn engineer must consider all possible
combinations to prevent any possible attack. As a resudt,attacker has a significant advantage. The
traditional response is to engineer systems in a conseevégshion, using simple, mature mechanisms.
The Google Desktop’s use of low-level mechanisms to infgroetwork connections is an example of an
“unusual” approach that may be expected to have unintenolesbequences. A more conservative approach
would be to simply keep local search results entirely sépdram web search results.

2http://pedram.redhive.org/projects.php

5.1 Proposed solutions

We present five basic solutions that would prevent these iamiths attacks. Some of these solutions are
necessarily more thorough than others, and not all arebfieasi

1. Notincluding snippets: The Google Desktop search system currently integratepstsf the con-
tents of documents that match the search query. By remokisgtsnippets, perhaps only listing the
file names, significantly less information would be avaidafur an attacker. Of course, significantly
less value would be present for the user.

2. Not integrating: Local search integration is not a fundamental part of thegBoBesktop. It is an
optional feature that can be disabled by selecting one tlwack the preferences dialog.

3. Images: Instead of inserting text directly into the web page, the @e®esktop could instead insert
a reference to an external image, hosted by the Google DEslkibernal web server. A Java applet
would only be able to read the name of the image. MaliciouaSexpt would likewise only see the
name of the image. An attacker would be unable to see thespikehe image. Unfortunately, such
images would not get larger if the user requested largesfomr would they be legible to users with
screen-reading software nor would they support cuttingasting the text within them.

4. FRAMEs or IFRAMEs: Rather than inserting the local search results directly the Google
search result, the Google Desktop could insert some HTMiLdfgates an internal frame (IFRAME)
element which loads its content from the Google Desktopérival web server. This IFRAME would
have a different “source” than the web page that surrounasetining that hostile JavaScript, even
in the main Google page, would be unable to read the locatseasults.

5. SOCKS or other proxy styles: The Google Desktop currently intercepts TCP connects at &elel
in the operating system. This could be replaced, perhapsxplcitly setting a proxy or SOCKS
server in the web browser’s Internet settings. Of coursgjéh proxies are already in use, integrating
the Google Desktop would be more complicated. Furthernvande the Java applet attack might be
defeated with such settings, the JavaScript attacks waultraie to work.

Google decided to follow the IFRAME approach in their new lempentation. For contrast, Microsoft's
recent MSN Desktop Seartlappears to have no search integration whatsoever, althibdgls have an
ActiveX control that might be worthy of further investigati.

5.2 Security of IFRAMESs

The IFRAME solution completely resolves both the Java dpptel JavaScript-based attacks described in
this paper. A Java applet, making a simulated Google queasyldvonly see the HTML code to built the
IFRAME (<iframe src="http://127.0.0.1:4664/search?q=foo...">) but would not be
able to see the contents of the IFRAME. Likewise, JavaSdsipéestricted by the “same-origin” policy,
which generally denies scripts from one website the poweact®ss, modify, or manipulate properties
of another website originating from a different server [9]hese restrictions also apply to the contents

Shttp://beta.search.msn.com

of FRAME and IFRAME elements of HTML pages. The main pageigioris Google.com while the
IFRAME'’s origin is 127.0.0.1 . As a result, even if an attacker injects malicious JavagBdnto a
Google page, it will not be able to learn the results of loearshes.

One possible method for breaking the same-origin policyld/iba to use cross-site scripting attacks. These
attacks insert JavaScript into target pages by passingttaSaripts as arguments to web CGI scripts. The
Ley attack (described in Section 4.1) is an example of a esitesscripting attack. Similar attacks have
been done against web-mail systems [6] and web single1sigpstems [10]. The normal solution is for
the intermediary system to aggressively filter out Jav@Beand any other active content [1]. Following the
Ley attack, Google now does this filtering at Google.com.r&himes not appear to be any opportunity to
mount an attack of this kind against the Google Desktop’alla@b server. As a result, we believe that the
Google Desktop is not vulnerable to this class of attack.

Today, the security of the Google Desktop system is restmdavaScript’s “same-origin” policy. If an
attacker can somehow violate this policy, far more seridtaclks than merely reading local search results
will become possible [8]. As long as users are running reasigmrmodern web browsers, they should be
safe against this class of attacks.

6 Conclusions

We found that the Google Desktop personal search enginainedtserious security flaws that would allow
a third party to read the search result summaries that aredgheld in normal Google web searches by the
local search engine. While an attacker would not be ableda tige victim’s files directly, the search results
often contain snippets of the file results that will be visibd the attacker. If the victim had a file with a
list of web passwords, for example, an attacker might be tibkead some of those passwords. These
attacks, now fixed by Google, represent a common example ofrgasition attack, where the attacker
could combine unrelated features of the system to violaesdturity assumptions of a critical service.

References

[1] CERT Coordination Center.Understanding Malicious Content Mitigation for Web Deymes Feb. 2000.
http://www.cert.org/tech_tips/malicious_code_mitiga tion.html

[2] D. Dean, E. W. Felten, D. S. Wallach, and D. Balfanz. Jaseusity: Web browsers and beyond. In D. E.
Denning and P. J. Denning, editohsternet Besieged: Countering Cyberspace Scofflpages 241-269. ACM
Press, New York, New York, Oct. 1997.

[3] Google CorporationAbout Google Desktgec. 2004 http://desktop.google.com/about.html

[4] Google CorporationGoogle Desktop Search Privacy Poli@ec. 2004 http://desktop.google.com/
privacypolicy.html

[5] Google Corporation Why are my personal results appearing on Google@c. 2004.http://desktop.
google.com/support/bin/answer.py?answer=10996&query =integration&topic=
0&type=f .

[6] J. Grossman. Hotmail CSS Vulnerability (New Strain) WhiteHat Security, Aug. 2001.http://www.
whitehatsec.com/labs/advisories/WH-Security Advisor y-08152001.html

[7] J. Ley. Google Desktop ExplqiOct. 2004 http://jibbering.com/2004/10/google.html

[8] A. Megacz. XWT Foundation Advisory: Firewall circumvention possibigh all browsers XWT Foundation,
July 2002.http://www.securitytracker.com/alerts/2002/Jul/1004 878.html

[9] T. Powell and F. Schneider. JavaScript: The Complete Reference McGraw-Hill/Osborne,

2004. Security-relevant chapters online Htp://www.devarticles.com/c/a/JavaScript/
JavaScript-Security/0/

[10] M. Slemko. Microsoft Passport to Trouble Nov. 2001. http://alive.znep.com/ "marcs/
passport/

[11] A. Stubblefield, J. loannidis, and A. D. Rubin. Using tahrer, Mantin, and Shamir attack to break WEP. In
Network and Distributed Systems Security Symposium (N388Diego, CA, Feb. 2002.

