IMMUNITY 8@

Immunity, Inc. Advisory

Vulnerability
INSTANTANEA: Wins.exe remote vulnerability.

WINS is a Microsoft NetBIOS name server, that basically eliminates the need for
broadcast packet to resolve a NetBIOS computer name to an IP address.

WINS has a feature called WINS replication, where one or more WINS servers exchange
information with each other about the computers on their respective networks. WINS
replication is done on TCP port 42 using a Microsoft proprietary protocol. During this
protocol flow, a memory pointer is sent from server to client, and the client uses that to
talk with the server. If a special crafted packet is sent to the server, an attacker can
control the pointer and can make it point to an attacker-controlled buffer and eventually
write 16 bytes at any location.

The packet that we are sending looks like this:

| size of packet | (excluding 4 bytes of size field)

The size of the packet is passed as argument to HeapAlloc (wins checks that size is less
than Ox2F87F8). The second dword is the condition we have to pass to trigger the bug.
Finally the address pointer that from now on we call "myself" points to a special structure
used by wins to exchange information between servers.

To exploit it, what we do is try to point “myself” to a buffer that we can control, what we
do is send a big packet of about 0x40000 bytes so we can guess where it would be. Once
we point to something that we control, we need to point to a specific structure that looks
like this:



Obviously, where is the address that we want to write to, and what* are the 16 bytes that
we are writing to where address.
So we have three problems arise:

(a) How to point exactly to my crafty structure

(b) Where to write

(c) What to write

The (a) point is resolved creating a special structure with "where-0x48" * 9 and what *
14, if we repeat this structure, we could brute force the structure and with less than 3 tries
we will have our Write16 primitive. (Note: Access Violations are caught by wins.exe).
The (c¢) point is resolved guessing an approximate address of the 0x40000 bytes malloc.
Now, (b) point is the hardest value to find, and is related to point (a) and c. Because as
Oded Horovitz has documented, and common sense says, when a large amount of bytes is
freed, it is returned back to the OS, and the consequence are that our function pointer has
to be triggered before HeapFree is executed, so we have to discard PEB function pointer.
In order not to loose all the advantages that the big buffer gives us, we try to find the
return address by brute forcing the stack.

Useful ollydbg breakpoints (SP3)

Breakpoints

Address Module Active Disassembly Comment
01012EEC wins  Always CALL DWORD PTR DS:
[<&KERNEL32.Create

01013404 wins  Log MOV EDLLDWORD PTR DS:[<&KERNEL32.1st
01013413 wins  Log MOV ESL,LDWORD PTR DS:[<&KERNEL32.Ist
01015D93 wins  Log CALL DWORD PTR DS:[<&KERNEL32.Istrcp
0101811D wins  Log CALL DWORD PTR DS:[<&KERNEL232.Istrcp
0102117C wins  Always PUSH ESI

0102122E wins  Always MOV ESI,wins.01026520

01021274 wins  Always ADD EAX 4

01021294 wins Always CMP EAX.-1



010212AE wins  Always ADD EDX,4

010212DA wins  Always PUSH wins.01026A68

010212E4 wins  Always CALL wins.01012ACC

01021368 wins  Always PUSH wins.01003CAC01021397 wins
Always JMP wins.010212FF

010213E7 wins  Always CALL wins.01022C8B recv 240
01021403 wins Always CALL wins.010224AA recv4
01021423 wins Always JNB wins.010212FF

0102143E wins  Always CALL <JMP.&WS2_32 #151>

01021460 wins  Always CALL wins.0102185C

010214CF wins  Always DEC ECX

010214E9 wins  Always JMP SHORT wins.010214C9

010214F7 wins Always JMP wins.01021416

01021526 wins  Always CALL DWORD PTR DS:[<&WS2_32.#1>]
01021563 wins  Always CALL wins.01012806

0102158A wins  Always CALL wins.01012DB1

010215B8 wins  Always JNZ SHORT wins.010215C3

010215C8 wins  Always CALL wins.01022040

010215D2 wins  Always XOR EAX,EAX

01021614 wins  Always CALL DWORD PTR DS:
[<&KERNEL32.Interl

01021622 wins  Always MOV DWORD PTR SS:[EBP-4FC],ESI
0102165E wins  Always CALL wins.01012DB1

01021676 wins  Always JE wins.010212FF

0102167F wins  Always CALL DWORD PTR DS:[<&WS2_32 #14>]
010216BE wins  Always CALL wins.01012806

01021790 wins Always JMP wins.010216FC

010217EE wins  Always MOV EAX,DWORD PTR SS:[EBP-14]
0102197D wins  Always PUSH EBP

0102252B wins  Always MOV EAX,DWORD PTR SS:[EBP-4]
010225FE wins  Always CALL wins.0102240C

Discovery Method

This exploit was discovered by tracing through the processes with Ollydbg and manually
analyzing the disassembly by Nicolas Waisman.

Affected

All known versions of Wins.exe are affected. Windows 2000 SP2-4 were tested.

History
Research and Exploited by Immunity Researcher Nicolas Waisman, May, 2004.



Released to VSC May, 2004.
Released to public 26 November, 2004

Detection

Immunity Research has provided a working exploit for this problems, on the standard
CANVAS distribution.

For questions or comments, please contact Immunity, Inc. at dave @immunitysec.com, or
http://www.immunitysec.com



